Homework #1

Due: Wed., Aug. 28th, 2024

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- **#1.** Group axiom basics.
 - (a) We can equip $\mathbb{Z}_{\geq 0}$ (the non-negative integers) with the operation: $a \circ b = a^b$ (i.e., exponentiation). For example, $2 \circ 3 = 2^3 = 8$. In this context, discuss each of the following axioms: Closure, Associativity, (Right and Left) Identity, (Right and Left) Inverses, and Commutativity. If an axiom holds, explain why (=prove it). If an axiom fails, give a **concrete counterexample** showing it fails.

Example: If I wanted to show \mathbb{Z} has a (two-sided) multiplicative identity, I would say, "Notice $1 \in \mathbb{Z}$ and for all $n \in \mathbb{Z}$, 1n = n = n1." On the other hand, if I wanted to show \mathbb{Z} fails to have multiplicative inverses, I would say, \mathbb{Z} lack multiplicative inverses for some elements. In particular, 2 belongs to \mathbb{Z} but its multiplicative inverse $2^{-1} = \frac{1}{2}$ does not."

(b) Let's equip $\mathbb{Q}_{\neq 0}$ (the nonzero rational numbers) with a weird operation: $x \star y = \frac{2xy}{5}$. For example, $-1 \star 5 = \frac{2(-1)5}{5} = -2$. As another example: $(x \star y) \star z = \left(\frac{2xy}{5}\right) \star z = \frac{2(2xy/5)z}{5} = \frac{4xyz}{25}$. Obviously, $\mathbb{Q}_{\neq 0}$ is closed under \star . Show $\mathbb{Q}_{\neq 0}$ is a group under this operation.

You need to show \star is associative, has an identity, and elements have inverses. Also, is $\mathbb{Q}_{\neq 0}$ equipped with \star an abelian group?

- #2. Let G be a group with identity $e \in G$. In general, the law of exponents $(ab)^n = a^n b^n$ may fail to hold.
 - (a) Give a concrete example of a group G and elements $a, b \in G$ where $(ab)^{-1} \neq a^{-1}b^{-1}$.
 - (b) Prove G is an abelian group if and only if for all $a, b \in G$, $(ab)^{-1} = a^{-1}b^{-1}$. Note: This is an "if and only if" statement. You need to prove two implications.
- #3. Consider the dihedral group $D_6 = \{R_{0^{\circ}}, R_{60^{\circ}}, R_{120^{\circ}}, R_{180^{\circ}}, R_{240^{\circ}}, R_{300^{\circ}}, V_1, V_2, V_3, V_4, V_5, V_6\}$ (symmetries of a regular hexagon). [Rotations are done counter-clockwise and reflections are labeled in the picture below.]

- (a) Compute $V_2R_{60^{\circ}}$, $R_{180^{\circ}}V_5$, and V_1V_2 . [Draw some pictures!]
- (b) Is D_6 Abelian? Why or why not?
- (c) Make a table of inverses and orders for each element:

Element:	g =	$R_{0^{\circ}}$	$R_{60^{\circ}}$	$R_{120^{\circ}}$	$R_{180^{\circ}}$	$R_{240^{\circ}}$	$R_{300^{\circ}}$	V_1	V_2	V_3	V_4	V_5	V_6
Inverse:	$g^{-1} =$???											
Order:	g =	???											

Note: Recall that the order of an element g is the smallest positive power n such that g^n is the identity. If no such power exists the order of g is ∞ .