Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1 Workin' mod whatever.

(a) Working mod 12. Create (and fill) a table as follows

(if an entry is undefined, write "DNE" = does not exist):

element $x =$	0	1	2	3	4	5	6	7	8	9	10	11
additive inverse $-x =$	0											
additive order $ x =$	1											
mutiplicative inverse $x^{-1} =$	DNE											
multiplicative order $ x =$	DNE											

Note: Additive inverses and orders go with the group structure of $(\mathbb{Z}_{12}, + \text{mod } 12)$ whereas the multiplicative inverses and orders go with the group structure of $(U(12), \cdot \text{mod } 12)$.

- (b) Compute $2^{100} + (13 26) \cdot 5^{-2} \pmod{8}$.
- (c) Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

Explain why A does not belong to $GL_2(\mathbb{Z}_{12})$.

Then explain why A does belong to $GL_2(\mathbb{Z}_7)$ and compute A^{-1} .

#2 Use the extended Euclidean Algorithm to find 109^{-1} in U(4115).

Show your work. Simplify your answer (your answer should be a number between 0 and 4114).

#3 Let $a, b \in \mathbb{Z}$ (not both zero) such that $d = \gcd(a, b)$. In addition, let a = da' and b = db'.

Show that gcd(a', b') = 1.

- #4 Show that for every $n \in \mathbb{Z}$, we have $n^3 = n \pmod{6}$.
- #5 RESUBMIT Type up Homework #1 Problem #2 and its solution in LATEX.

Let G be a group with identity $e \in G$.

- (a) Give a concrete example of a group G and elements $a, b \in G$ where $(ab)^{-1} \neq a^{-1}b^{-1}$.
- (b) Prove G is an abelian group if and only if for all $a, b \in G$, $(ab)^{-1} = a^{-1}b^{-1}$.

When typing this problem up, write it up carefully: Restate the problem. Write in complete sentences.