Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 In each of the following rings, R, state the characteristic of the ring. If R has unity, give an example of a unit and its inverse (other than 1 itself). If no unit exists, explain why not. If R has zero divisors, give an example of a zero divisor. If no zero divisors exist, explain why not.
 - (a) $R = \mathbb{Z}_6 \times \mathbb{Z}_{15}$
 - (b) $R = 5\mathbb{Z} = \{5k \mid k \in \mathbb{Z}\}$ (multiples of 5)
 - (c) $R = (\mathbb{Z}_{11})^{2 \times 2}$ (2 × 2 matrices with entries in \mathbb{Z}_{11})
- #2 Let R be a ring with 1. Let u be a unit and z be a zero divisor. Prove that zu is a zero divisor but u^2 is a unit. Note: Argue carefully. You will need to write separate arguments for the cases where z is a left zero divisor and where z is a right zero divisor.
- #3 Let $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}.$

This ring is equipped with an extra tool called an algebraic *norm*. We define the norm of $z=a+b\sqrt{-5}$ by $N(z)=(a+b\sqrt{-5})(a-b\sqrt{-5})=a^2+5b^2$. Notice that $N(z)\in\mathbb{Z}_{\geq 0}$.

A very helpful observation is that for any $w, z \in \mathbb{Z}[\sqrt{-5}]$, we have N(wz) = N(w)N(z).

- (a) Prove $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C} .
- (b) When is N(z) = 0? When is N(z) = 1?
- (c) If $u \in U(\mathbb{Z}[\sqrt{-5}])$, then what can be said about N(u)? [Hint: Consider $N(uu^{-1})$.] Determine $U(\mathbb{Z}[\sqrt{-5}])$.
- (d) Prove that $\mathbb{Z}[\sqrt{-5}]$ has no zero divisors. [Hint: Use the norm.]

Note: Since $\mathbb{Z}[\sqrt{-5}]$ is a commutative ring with $1 \neq 0$ and it has no zero divisors, it is an *integral domain*.

#4 Prove that $\mathbb{Q}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Q}\}$ is a field.

Note: Use a subring test to show it is a ring (it is a subring of \mathbb{C}).

Then use the "conjugate trick" to show it has multiplicative inverses.