MATH 3110 HOMEWORK #1 ANSWERS

Appendix #22 Negate the following: “For every real number r, the square of r is nonnegative.”

Answer: “There exists a real number r such that r is negative.” ...or less words and more
symbols... “Ir € Rs.t. r2 <0.”

[Of course, our answer is a false statement since > > 0V r € R/]
1.1 #14 Let C ={x|x =3r—1for somer € Z} and D = {z |z = 3s+ 2 for some s € Z}. Show that
C=D.

proof: Suppose that x € C = 3 r € Zst. t=3r—1. Btz =3r—1=3(r—1)+2 and
r—1 € Z since r € Z. Thus (setting s = r — 1) we get that x = 3s + 2 where s € Z and thus
reD  .CCD.

Next, suppose that t € D = 3 s € Zs.t. t =3s+2. Butz =3s+2=3(s+1)—land s+1 € Z
since s € Z. Thus (setting r = s+ 1) we get that x = 3r — 1 where r € Z and thus z € C .
DCC.

Finally, since C' C D and D C C, we can conclude that C' = D.

1.1 #30 Show that AUB =AU (B — A).

proof: Suppose that 1 € AU(B—A) =rxc Aotz e B-A=axcAor(r€ Bandx g A)
>rcAorreB=rcAUB.  AU(B-A) CAUB.

Suppose that © € AU B. Notice that either z € A or x ¢ A. Consider two cases:
ez € A= 1 € AUC where C could be anything — like, for example, C' = B — A ..
re AU (B —A).

e ¢ A=x€ Bsincex € AUB (sox € Aorxz € B) and x € A. So we have that x € B
andz ¢ A=zx € B—Aandsoz € CU(B—A) for any set C' — like, for example, C' = A.
xeAU(B—A).

SAUBCAU(B-A).
Finally, since AUB C AU (B — A) and AU (B —A) C AU B, we can conclude that AU B =
AU (B—A).

1.2 #4a,c,d,i Let f : Z — 7Z (both the domain and codomain of f is Z). For each map, prove or
disprove: f is one-to-one and prove or disprove: f is onto.

#4a f(r) = 2ux:
f is one-to-one — proof: suppose that f(z) = f(y) = 2x = 2y = x = y. Thus [ is injective.
f is not onto — proof: suppose that f(z) =1 then 2z =1 and thus x = 1/2. But 1/2 ¢ 7Z .
1 is not in the image of f (so f is not onto).



#4c f(x) =243

f is one-to-one — proof: suppose that f(z) = f(y) = r+3=y+3 = x =y. Thus [ is
injective.

f is onto — proof: suppose that y € Z then y —3 € Z and f(y —3) = (y —3) +3 = y. Thus
y is in the image of f. Therefore, the image of f contains all possible integers and thus f is
onto.

Alternate proof: Let g : Z — Z be defined by g(x) = x — 3. Notice that (fog)(x) =
F(g(x)) = f(z —3) = x and (g= f)() = g(F(z)) = gz +3) = z. Therefore, f+g = idy, =
ge f. Thus f is invertible (with inverse f~ = g) and so f is bijective (both one-to-one and
onto).

#4d f(z) = 23

#4i f(x) =

f is one-to-one — proof: suppose that f(z) = f(y) = 2* = y* = x =y. Thus f is injective.
f is not onto — proof: suppose that f(r) =2 = 2% =2 = o = /2 ¢ Z . 2 is not in the
image of f.

x T is even
{ xT’l zisodd -
f is not one-to-one — proof: f(1) = (1—-1)/2=0= f(0).
f is onto — proof: suppose that y € Z. Then 2y + 1 € Z and 2y + 1 is odd .. f(2y + 1) =
((2y +1) —1)/2 = y. Thus every integer is in the range of f .-. f is surjective.

1.2 #22 Let f: A— B and A,B;«é@. Let Sy, 5, C A.

(a)

Show f(S1U S2) = f(S1) U f(S2).

proof: Let y € f(S1USy) = Jx € S1USy s.t. f(x) =y =y = f(x) wherex € S; or x € S5.
If z € Sy, then y = f(x) € f(S1) and if © € Sy, then y = f(x) € f(S2) .y € f(S1) U f(S2)
S f(S1USs) € f(S1) U f(S2).

Now suppose that y € f(S1)U f(S2) = y € f(S1) ory € f(S52). If y € f(S1), then Jz € 5
st. f(z) =yandify € f(S3), then 3z € Sy s.t. f(x) =y. Therefore, 3z € Sy orz € Sy s.t.
flx)=y. .3z eS1USyst. f(zr)=y. Thusy € f(S1USy) ... f(S1)U f(S2) C f(S1US).
Finally, we conclude that f(S1) U f(S2) = f(S1 U Ss).

Show f(S1 M S2) C f(S1) N f(S2)

proof: Let y € f(S1NSy) = Jx € 51 NSy st f(x) =y. Thus x € S; and x € S, and
f(z)=vy. Soy € f(S1)and y € f(Ss) ...y € f(S1)Nf(S3). Thus f(S1NSy) C f(S1)Nf(Sa).
Give an example where f(S; N Sy) # f(S1) N f(Ss).

Let A= B = {1,2} and f : A — B where f(1) = f(2) = 1. In addition, let S; = {1}
and Sy = {2}. Then, f(S1NS5) = f(@) = ¢ but f(S1) N f(S2) = {1} N {1} = {1} .~
f(S1 N S2) # f(S1) N f(S2).

Note: Any map which is not one-to-one will furnish us with an example. In fact, we can
prove the following statement:



Let f: A — B be a map. Then f is injective if and only if for all S7, 5, C A we have that
f(S1 N S2) = f(S1) N f(S2).

proof: Suppose that f is injective and 51,5 € A. We already know from part (b) that
f(S1 N Sy) C f(S1) N f(S2). We need to show the reverse inclusion. Suppose that y €
f(Sl) N f(SQ) =Y Ec f(Sl) and y e f(Sg) = Jdx; € S] and 29 € S5 s.t. Yy = f(.Il) = f(IQ)
But f is injective ., 1 = x9. So xp is in both S; and S3. Thus x; € S; NS, and so
y € f(S1NSy) . f(S1)Nf(S) C f(S1NSs). So we have shown that f injective implies that
f(S1) N f(Sy) = f(S1NSy) (V S1,5 C A).

Now suppose that f is not injective. We need to show that 3 57,5, C A s.t. f(S1NSy) #
f(S1) N f(S2). Well, f is not injective ", 3 x1,29 € A, 21 # x5 s.t. f(z1) = f(xe) (for
convenience set y = f(z1) = f(x2)). Now consider S; = {x;} and Sy = {z2}. Then
£(81 01 8) = F(@) = @ and £(S)0 F(S,) = {y} 0 {y} = {y}. Therefore, £(S; N Sy) #
f(S1) N f(S2). So we have shown that if f fails to be injective, then f will fail to preserve
set intersections.

Show that f(Sl) - f(SQ) Q f(Sl - Sg)

proof: Suppose that y € f(S1) — f(S2) = y € f(S1) and y € f(S;) ... Fx € S s.t.
f(z) = y. Notice that if x € Sy then y = f(z) € f(S3) ... * € Sz and so z € S; — Sy and
thus y = f(x) € f(S1 — S2) .. f(S1) = f(S2) C [(S1— S52).

Give an example where f(S7) — f(S2) # f(S1 — Sa).

Again consider A = B = {1,2} and f : A — B defined by f(1) = f(2) = 1. Let 5, = A
and Sy = {2}. Then f(S1) — f(S2) = {1} — {1} = @ and f(S; — S3) = f({1,2} — {2}) =
S = {1} - f(S1) = f(S2) # f(S1— S2).

Note: Again, any map which is not one-to-one will furnish us with an example. In fact, we
can prove the following statement:

Let f: A — B be a map. Then f is injective if and only if for all S;, 5y C A we have that
f(S1 = 82) = [(51) — f(S2).

proof: Suppose that f is injective and S;, Sy € A. We already know from part (d) that
f(S1) — f(S2) C f(S1 — S2). We need to show the reverse inclusion. Suppose that y €
f(S1—82) = 3z €S —Syst. y= f(x). In particular, x € S; and so y = f(x) € f(5)
Now suppose y € f(S2) = 3 z € Sy s.t. y = f(z). But f is injective .". since f(z) = f(2)
we have that © = z and so x € Sy. This is impossible since z € S; — S, (and thus = € Sy).
Therefore, y € f(S2) and thus y € f(S1) — f(S2) ... f(S1—S2) C f(S1) — f(S2). So we have
shown that f injective implies that f(S; — Ss) = f(S1) — f(S2) (V S1,5: C A).

Now suppose that f is not injective. We need to show that 3 57,59 C A s.t. f(S) — Ss) #
f(S1) — f(S2). Well, f is not injective ... 3 x1,20 € A, 11 # x2 s.t. f(xy) = f(xg) (for
convenience set y = f(z1) = f(x2)). Now consider Sy = {z1,z2} and Sy = {z2}. Then
f(S1) = [(S2) = {y} = {y} = @ and f(Si — S2) = f({wr, 22} — {22}) = f({m1}) = {y}.
Therefore, f(S; —S53) # f(S1) — f(S2). So we have shown that if f fails to be injective, then
f will fail to preserve set differences.



