MATH 3110 GROUP EXAMPLES

Definition: A non-empty set G equipped with a binary operation $*: G \times G \to G$ is a **group** if...

- Associativity: (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- Identity: There exists $e \in G$ such that a * e = a = e * a for all $a \in G$.
- Inverses: For each $a \in G$ there exists $b \in G$ such that a * b = e = b * a.

If in addition, we have...

• Commutativity: a * b = b * a for all $a, b \in G$.

then G is called an **Abelian group** or sometimes a **commutative group**.

Some groups we already know...

- \mathbb{Z} (integers) with + (addition) is an infinite Abelian group.
- \mathbb{E} (even integers) with + is also an infinite Abelian group. However, odd integers are not closed under addition so they do not form a group.
- Some related (infinite) Abelian groups are \mathbb{Q} (rational numbers), \mathbb{R} (real numbers), and \mathbb{C} (complex numbers) each with the operation + (addition).
- \mathbb{Z} with \times (multiplication) is not a group since most elements do not have inverses. However, $U(\mathbb{Z}) = \{\pm 1\}$ (the "units" of \mathbb{Z}) is an Abelian group under multiplication.
- In the same way, 0 does not have a multiplicative inverse (ever), but once we remove 0, the following sets become (infinite Abelian) groups under multiplication: \mathbb{Q}^{\times} , \mathbb{R}^{\times} , and \mathbb{C}^{\times} (non-zero rational, real, and complex numbers respectively).
- Let $n \in \mathbb{Z}_{>0}$. $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ (integers mod n) with the operation $+ \pmod{n}$ form a finite Abelian group.
- Let $n \in \mathbb{Z}_{>0}$. $U(n) = U(\mathbb{Z}_n) = \{k \in \mathbb{Z}_n \mid (k,n) = 1\}$ (units of \mathbb{Z}_n) with the operation \times (multiplication mod n) is a finite Abelian group. As before, \mathbb{Z}_n itself is not a group under multiplication since in general many elements lack inverses.
- \mathbb{R}^n (n-tuples), $\mathbb{R}^{m \times n}$ ($m \times n$ matrices), $\mathbb{R}[x]$ (polynomials with real coefficients) or other vector spaces under vector addition are Abelian groups.

"New" groups...

- $GL_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid \det(A) \neq 0\}$ (invertible $n \times n$ matrices) with matrix multiplication is a non-Abelian (if n > 1) group. [GL = General Linear]
- $GL_n(\mathbb{Z}) = \{A \in \mathbb{Z}^{n \times n} \mid \det(A) = \pm 1\}$ $(n \times n \text{ matrices with integer entries and determinant equal to } \pm 1)$ with matrix multiplication is a non-Abelian (if n > 1) group.
- $GL_n(\mathbb{Z}_m) = \{A \in (\mathbb{Z}_m)^{n \times n} \mid \det(A) \in U(\mathbb{Z}_m)\}\ (n \times n \text{ matrices with entries in } \mathbb{Z}_m \text{ and determinant equal to a unit of } \mathbb{Z}_m) \text{ with matrix multiplication is a finite group (and is non-Abelian for } m \text{ and } n \text{ large enough)}.$
- $SL_n(BLAH) = \{A \in GL_n(BLAH) | \det(A) = 1\}$ is a group (usually non-Abelian) under matrix multiplication. [SL = Special Linear]
- Fix some integer $n \geq 3$ and let X be some regular n-gon. $D_n = \{f : \mathbb{R}^2 \to \mathbb{R}^2 \mid f \text{ an isometry and } f(X) = X\}$ with the operation of function composition is a non-Abelian group. For example: D_3 is symmetries of an equilateral triangle and D_4 is symmetries of a square. *Note:* Isometry = distance and angle preserving bijection (think reflection/rotation).
- Fix some set X, $S(X) = \{f : X \to X \mid f \text{ bijective}\}$ is a non-Abelian (if |X| > 2) group under function composition. S(X) is the group of permuations of X or symmetric group on X. If $X = \{1, 2, ..., n\}$, we write S_n instead of S(X).