
Math 3110 Lots ’O Definitions

Let S ⊆ T such that S 6= φ (S is non-empty).
Binary Relation: Let ∗ : S × S → S be a map denoted by a ∗ b for all a, b ∈ S. Such a map ∗ is called a binary
operation or binary relation on S. Notice that part of the definition of a binary relation is that the range of ∗ is
contained in S. Thus if we have ∗ : S×S → T , then to check that ∗ is a binary relation we must verify that a∗ b ∈ S
for all a, b ∈ S (this is called checking closure).

Let S be a non-empty set with a binary operation ∗ (so S is closed under the operation ∗).
Associativity: If a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S, then we say ∗ is an associative operation on S.

Identity: Suppose we have an element e ∈ S such that a ∗ e = a = e ∗ a for all a ∈ S. Then e is called an identity
element for the operation ∗ on S.

Inverses: Suppose that e ∈ S is an identity element. Then S has inverses if for each a ∈ S there exists some b ∈ S
such that a ∗ b = e = b ∗ a (b is the inverse of a).

Commutativity: If a ∗ b = b ∗ a for all a, b ∈ S, then ∗ is a commutative operation on S.

Some basic algebraic objects...
Semigroup = Closure + Associativity: A non-empty set with an associative binary operation is called a semi-

group. Note: Some authors assume their semigroups have an identity (for them semigroup = monoid).

Monoid = Closure + Associativity + Identity: A semigroup with an identity element is called a monoid.

Group = Closure + Associativity + Identity + Inverses: A monoid such that each element has an inverse
is called a group.

Abelian Group = Group + Commutativity: A group with a commutative binary operation is called an Abelian
group (or sometimes a commutative group).

Ring: Let R be a non-empty set equipped with two binary operations:
Closure under Addition: + : R×R→ R called addition denoted a+ b for all a, b ∈ R and

Closure under Multiplication: · : R×R→ R called multiplication denoted ab for all a, b ∈ R.
Then R is a ring if the following axioms hold:

(i) R paired with the operation + is an Abelian group – denote the identity element by 0. That is:
Addition is associative: For all a, b, c ∈ R we have a+ (b+ c) = (a+ b) + c.
Additive identity: There exists some 0 ∈ R such that for all a ∈ R we have a+ 0 = a = 0 + a.
Additive inverses: For all a ∈ R there exists −a ∈ R such that a+ (−a) = 0 = (−a) + a.
Addition is commutative: For all a, b ∈ R we have a+ b = b+ a.

(ii) R paired with the multiplicative operation is a semigroup. That is:
Multiplication is associative: For all a, b, c ∈ R we have a(bc) = (ab)c.

(iii) The multiplication on R distributes across the addition on R. That is for all a, b, c ∈ R:
Left-Distributivity: For all a, b, c ∈ R we have a(b+ c) = ab+ ac.
Right-Distributivity: For all a, b, c ∈ R we have (a+ b)c = ac+ bc.

For all a, b ∈ R, let La : R→ R be defined by La(b) = ab and Ra : R→ R by Ra(b) = ba. These are left and right
multiplication operators. Notice that the distributive laws say (for every a, b, c ∈ R) La(b+ c) = a(b+ c) = ab+ac =
La(b) + La(c) and Rc(a+ b) = (a+ b)c = ac+ bc = Rc(a) +Rc(b). In other words, the distributive laws merely say
that left and right multiplications are Abelian group homomorphisms (with respect to addition). So a ring (R,+, ·)
is an Abelian group (R,+) and semigroup (R, ·) such that left and right multiplication operators are homomorphisms
with respect to the (R,+) structure. Note: A homomorphism sends an identity to identity. Thus La(0) = 0 = Ra(0),
so a0 = 0 = 0a for all a ∈ R. It also preserves inverses so that La(−b) = −La(b) and Rb(−a) = −Rb(a). Thus
a(−b) = −(ab) = b(−a) for all a, b ∈ R.

Note of possible interest: If R has a multiplicative identity, requiring addition to be commutative is redundant!
Why? Suppose a, b ∈ R. Then −(a + b) = (−b) + (−a) using the socks-shoes inverse property. [This property is
true in any system where inverses make sense.] Next, consider (−1)c = Rc(−1) = −Rc(1) = −(1c) = −c using
the fact that right distributivity implies right multiplications are homomorphisms and thus preserve inverses. Thus
−(a+b) = −(1(a+b)) = (−1)(a+b) = (−1)a+(−1)b = (−a)+(−b) where we just used the fact that 1 is the identity
(1(a+ b) = a+ b), the negation property from above (−(1(a+ b)) = (−1)(a+ b), (−1)a = −a, and (−1)b = −b), and
the left distributive law ((−1)(a+ b) = (−1)a+ (−1)b). Therefore, (−b) + (−a) = −(a+ b) = (−a) + (−b). Now add
a+ b on the left of both sides of the equation and b+ a on the right of both sides and get b+ a = a+ b.

1



Let R be a ring.

Zero Divisors: Let a, b ∈ R be two non-zero elements (a 6= 0 and b 6= 0). Then if ab = 0, we call both a and b zero
divisors. More precisely, a is a left zero divisor and b is a right zero divisor.

Units: Let a ∈ R. If there exists b ∈ R such that ab = 1 = ba, then a is called a unit in R. The collection of all
units of R is called the group of units and is denoted U(R) or better yet R×.

For example, recall U(n) = U(Zn) are the units (elements with multiplicative inverses) in Zn.

Again, let R be a ring. Special types of rings...
Ring with Identity: If there exists some element 1 ∈ R such that a1 = a = 1a for all a ∈ R, then R is called a

ring with identity (or ring with 1 or ring with unity).

Commutative Ring: If the multiplication on R is commutative (that is ab = ba for all a, b ∈ R), then R is called
a commutative ring.

Integral Domain: Let R be a commutative ring with identity such that 1 6= 0. If R has no zero divisors, then R
is an integral domain. This means that for all a, b ∈ R if ab = 0, then either a = 0 or b = 0.

Field: Let R be a commutative ring with identity such that 1 6= 0. If every non-zero element of R is a unit, then R
is a field. That means that for all a ∈ R there exists a−1 ∈ R such that aa−1 = 1 = a−1a.

Domain: If we remove the assumption of commutativity from the definition of an integral domain, we get the
definition of a domain.

Division Ring: If we remove the assumption of commutativity from the definition of a field, we get the definition
of a division ring (or skew field).

Some notation...
Additive Notation: Typically the “+” symbol is only used for commutative operations, and the identity element

is denoted by “0”. Let’s say that (R,+) forms an Abelian group (this is true for any ring R). Then each
element a ∈ R has a unique additive inverse which we denote by −a. Let n ∈ Z>0 then by na we mean:
na = a+ a+ · · ·+ a︸ ︷︷ ︸

n times

. Also, 0a is defined to be 0a = 0. Notice that the zero on the left hand side is the integer

zero whereas the zero on the right hand side is the zero of the group (or ring). Since −a exists, we define:
(−n)a = (−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸

n times

.

Various laws of exponents hold: For any m,n ∈ Z and a, b ∈ R, we have (n+m)a = na+ma, n(ma) = (nm)a,
and (since addition is commutative) n(a+b) = na+nb. Note: This last law of exponents looks like a distributive
law, but it is not. For example: 2(a+ b) = (a+ b) + (a+ b) = (a+ a) + (b+ b) = 2a+ 2b (using commutativity
and associativity). Sometimes notation is ambiguous. For example, 0a could be the ring’s zero element times a
or it could be the zero-th additive power of a. Either way, this results in the ring’s additive identity 0: 0a = 0.
Likewise, 1a could be the first additive power of a or if R has 1, this could mean 1 times a. Either way, we get
1a = a. Thus these ambiguities don’t typically matter.

Multiplicative Notation: Typically the multiplication in a ring is denoted by juxtaposition (putting symbols next
to each other). If a ring has a multiplicative element, it is usually denoted by “1”. If R is a ring with 1 and
a ∈ R, then a may or may not have a (multiplicative) inverse. However, if a does have an inverse, this inverse
is unique and is denoted by a−1. Let n ∈ Z>0 and a ∈ R (a ring), then by an we mean: an = aa . . . a︸ ︷︷ ︸

n times

. If R

is a ring with 1, we define a0 = 1 where the zero in the exponent is the integer zero and the 1 on the right
hand side is the multiplicative identity of R. Finally, if R is a ring with 1 and a is a unit of R (i.e., it has a
multiplicative inverse), then we define a−n = a−1a−1 . . . a−1︸ ︷︷ ︸

n times

.

Again, we have laws of exponents: For any m,n that make sense, am+n = aman and (am)n = amn. On the
other hand, (ab)n = anbn is only guaranteed to hold if a and b commute. For example, if a and b are units
(i.e., have multiplicative inverses), (ab)−1 = b−1a−1 (which may or may not be equal to a−1b−1).

WARNING: Some (in fact many) authors require that all rings have multiplicative identities. In fact, what we
call a ring they call a rng (the i has been deleted) [Pronounced “rung”]. Also, some (very odd misguided) authors
require that in addition that 1 6= 0. For such authors, the zero ring R = {0} is not a ring!
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