\mathbb{Z} = integers, \mathbb{E} = even integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers, and \mathbb{Z}_n = integers (mod n) are all rings under the usual additions and multiplications.

 $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ are the *Gaussian integers*. Addition and multiplication are defined as follows: (a + bi) + (c + di) = (a + c) + (b + d)i and (a + bi)(c + di) = (ac - bd) + (ad + bc)i so that $i^2 = -1$ (i.e., $i = \sqrt{-1}$). $\mathbb{Z}[i]$ is a subring of the complex numbers.

Ring	Has Identity	Commutative	Integral Domain	Field	Characteristic	Finite
{0}	\checkmark	\checkmark			1	\checkmark
Z	\checkmark	\checkmark	\checkmark		0	
$E = 2\mathbb{Z}$		\checkmark			0	
Q	\checkmark	\checkmark	\checkmark	\checkmark	0	
\mathbb{R}	\checkmark	\checkmark	\checkmark	\checkmark	0	
\mathbb{C}	\checkmark	\checkmark	\checkmark	\checkmark	0	
\mathbb{Z}_n		\checkmark	only if n is prime	only if n is prime	n	
$\mathbb{Z}[i]$	\checkmark	\checkmark	\checkmark		0	

 $\mathbb{H} = \{a+bi+cj+dk \mid a, b, c, d \in \mathbb{R}\} \text{ are called the Quaternions (the "H" is in honor of their discoverer William Hamilton). Addition is defined as follows: <math>(a_1 + b_1i + c_1j + d_1k) + (a_2 + b_2i + c_2j + d_2k) = (a_1 + a_2) + (b_1 + b_2)i + (c_1 + c_2)j + (d_1 + d_2)k$. To multiply use distributive laws, multiply real numbers as usual, and multiply i, j, k as with the quaternion group $(ij = k, ji = -k, j^2 = -1$ etc. Briefly: $i^2 = j^2 = k^2 = ijk = -1$). They are an infinity non-commutative ring with identity. Their characteristic is 0. They are neither an integral domain nor a field since they are not commutative. However, \mathbb{H} has no zero divisors (they are a domain and every non-zero element has a multiplicative inverse (they are a skew-field or division ring).

Building ring out of things:

- Let G be any Abelian group with operation + and identity 0. Give G the "zero multiplication" defined by ab = 0 for all $a, b \in G$. Then G becomes a commutative ring. Every non-zero element of G is a zero divisor. If $G \neq \{0\}$, then G has no (multiplicative) identity.
- Let R_1 and R_2 be rings. Form the product ring $R_1 \times R_2$ by defining: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $(x_1, y_1)(x_2, y_2) = (x_1x_2, y_1y_2)$ for all $x_1, x_2 \in R_1$ and $y_1, y_2 \in R_2$. Notice that $R_1 \times R_2$ is commutative if and only if both R_1 and R_2 are commutative. Also, $R_1 \times R_2$ has an identity if and only if both R_1 and R_2 have identities. Suppose that $R_1 \neq \{0\}$ and $R_2 \neq \{0\}$. Let $0 \neq a \in R_1$ and $0 \neq b \in R_2$. Then (a, 0)(0, b) = (a0, 0b) = (0, 0), so $R_1 \times R_2$ always has zero divisors (if R_1 and R_2 aren't trivial) and thus cannot be an integral domain or a field. Note: $|R_1 \times R_2| = |R_1| \cdot |R_2|$. So, for example, $|\mathbb{Z}_2 \times \mathbb{Z}_3| = 2 \cdot 3 = 6$.
- Let R be a ring. $M_n(R) = R^{n \times n}$ is the ring of $n \times n$ matrices with entries in R. Remember if the *ij*-entries of A and B are a_{ij} and b_{ij} respectively, then the *ij*-entry of A + B is just $a_{ij} + b_{ij}$ and the *ij*-entry of AB is $\sum_{k=1}^{n} a_{ik}b_{kj}$. One can show that $R^{n \times n}$ has an identity if and only if R has an identity. Also, $R^{n \times n}$ is **not** commutative except in the case that (1) R is commutative and n = 1 or (2) R has the zero mutiplication (that is ab = 0 for all $a, b \in R$). Note: $|R^{n \times n}| = |R|^{n^2}$. So, for example, $|(\mathbb{Z}_3)^{2 \times 2}| = 3^{2^2} = 3^4 = 81$.
- Let R be a ring. $R[[x]] = \{a_0 + a_1x + a_2x^2 + \dots | a_i \in R\}$ is the ring of formal power series with coefficients in R. If $f(x) = a_0 + a_1x + \dots$ and $g(x) = b_0 + b_1x + \dots$, then $f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots$ and $f(x)g(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + \dots + (\sum_{i=0}^k a_ib_{k-i})x^k + \dots$. It is easy to show that R[[x]] is commutative if and only if R is commutative. Also, R[[x]] has a multiplicative identity if and only if R has 1. In fact, R is an integral domain if and only if R[[x]] is an integral domain.
- Let R be a ring. $R[x] = \{a_0 + a_1x + \dots + a_nx^n | a_i \in R\}$ is a subring of R[[x]] called the ring of polynomials with coefficients in R. Again, R[x] is commutative if and only if R is commutative; R[x] has a multiplicative identity if and only if R has 1; and R is an integral domain if and only if R[x] is an integral domain. For example, $\mathbb{Z}_5[x]$ are polynomials with coefficients in \mathbb{Z}_5 . This is an infinite ring with characteristic 5.