
Math 3110 Examples of Rings

Z = integers, E = even integers, Q = rational numbers, R = real numbers, C = complex numbers, and
Zn = integers (mod n) are all rings under the usual additions and multiplications.

Z[i] = {a + bi | a, b ∈ Z} are the Gaussian integers. Addition and multiplication are defined as follows:
(a+ bi) + (c+ di) = (a+ c) + (b+ d)i and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i so that i2 = −1 (i.e., i =

√
−1).

Z[i] is a subring of the complex numbers.
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H = {a+ bi+ cj +dk | a, b, c, d ∈ R} are called the Quaternions (the “H” is in honor of their discoverer William
Hamilton). Addition is defined as follows: (a1 + b1i+ c1j + d1k) + (a2 + b2i+ c2j + d2k) = (a1 + a2) + (b1 + b2)i+
(c1 + c2)j + (d1 + d2)k. To multiply use distributive laws, multiply real numbers as usual, and multiply i, j, k as
with the quaternion group (ij = k, ji = −k, j2 = −1 etc. Briefly: i2 = j2 = k2 = ijk = −1). They are an infinity
non-commutative ring with identity. Their characteristic is 0. They are neither an integral domain nor a field
since they are not commutative. However, H has no zero divisors (they are a domain and every non-zero element
has a multiplicative inverse (they are a skew-field or division ring).

Building ring out of things:
• Let G be any Abelian group with operation + and identity 0. Give G the “zero multiplication” defined by
ab = 0 for all a, b ∈ G. Then G becomes a commutative ring. Every non-zero element of G is a zero divisor.
If G 6= {0}, then G has no (multiplicative) identity.

• Let R1 and R2 be rings. Form the product ring R1 ×R2 by defining: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
and (x1, y1)(x2, y2) = (x1x2, y1y2) for all x1, x2 ∈ R1 and y1, y2 ∈ R2. Notice that R1 × R2 is commutative
if and only if both R1 and R2 are commutative. Also, R1 × R2 has an identity if and only if both R1

and R2 have identities. Suppose that R1 6= {0} and R2 6= {0}. Let 0 6= a ∈ R1 and 0 6= b ∈ R2. Then
(a, 0)(0, b) = (a0, 0b) = (0, 0), so R1 × R2 always has zero divisors (if R1 and R2 aren’t trivial) and thus
cannot be an integral domain or a field. Note: |R1×R2| = |R1| · |R2|. So, for example, |Z2×Z3| = 2 · 3 = 6.

• Let R be a ring. Mn(R) = Rn×n is the ring of n× n matrices with entries in R. Remember if the ij-entries
of A and B are aij and bij respectively, then the ij-entry of A + B is just aij + bij and the ij-entry of AB
is
∑n

k=1 aikbkj . One can show that Rn×n has an identity if and only if R has an identity. Also, Rn×n is not
commutative except in the case that (1) R is commutative and n = 1 or (2) R has the zero mutiplication
(that is ab = 0 for all a, b ∈ R). Note: |Rn×n| = |R|n2

. So, for example, |(Z3)
2×2| = 32

2
= 34 = 81.

• Let R be a ring. R[[x]] = {a0 + a1x + a2x
2 + ... | ai ∈ R} is the ring of formal power series with coefficients

in R. If f(x) = a0 + a1x + . . . and g(x) = b0 + b1x + . . . , then f(x) + g(x) = (a0 + b0) + (a1 + b1)x + ... and
f(x)g(x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ (

∑k
i=0 aibk−i)x

k + . . . . It is easy to show that R[[x]] is commutative
if and only if R is commutative. Also, R[[x]] has a multiplicative identity if and only if R has 1. In fact, R
is an integral domain if and only if R[[x]] is an integral domain.

• Let R be a ring. R[x] = {a0 + a1x + · · ·+ anx
n | ai ∈ R} is a subring of R[[x]] called the ring of polynomials

with coefficients in R. Again, R[x] is commutative if and only if R is commutative; R[x] has a multiplicative
identity if and only if R has 1; and R is an integral domain if and only if R[x] is an integral domain.
For example, Z5[x] are polynomials with coefficients in Z5. This is an infinite ring with characteristic 5.


