
Math 3110 Group Examples

Definition: A non-empty set G equipped with a binary operation ∗ : G×G→ G is a group if...

• Closure:∗ a ∗ b ∈ G for all a, b ∈ G.

• Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

• Identity: There exists e ∈ G such that a ∗ e = a = e ∗ a for all a ∈ G.

• Inverses: For each a ∈ G there exists b ∈ G such that a ∗ b = e = b ∗ a.

If in addition, we have...

• Commutativity: a ∗ b = b ∗ a for all a, b ∈ G.

then G is called an abelian group or sometimes a commutative group.

Examples:
Numbers under addition: Many of our familiar number systems form abelian groups under addition. For

example, Z (integers), Q (rational numbers), R (real numbers), and C (complex numbers) are all examples
of infinite abelian groups when given the operation of addition.

In each case 0 is the identity and the inverse of x would be −x. These are abelian groups because addition
is commutative: x + y = y + x.

Numbers under multiplication: Our same number systems do not form groups under multiplication. However,
if we discard elements without multiplicative inverses, we do obtain groups. For example, Q× = Q − {0}
(nonzero rationals), R× = R − {0} (nonzero reals), and C× = C − {0} (nonzero complex numbers) give us
examples of infinite abelian groups under multiplication.

With the integers we have to toss out a lot! The only integers with integer multiplicative inverses are ±1.
We have Z× = {1,−1} is a finite abelian group (of order 2) under multiplication.

In each case 1 is the identity and the inverse of x would be x−1 = 1
x . Again, these are abelian groups because

multiplication is commutative: xy = yx.

Even vs. Odd: The even integers E = 2Z = {2k | k ∈ Z} are also an infinite abelian group. However, the odd
integers are not. Notice that 3 + 5 = 8 (odd plus odd is not odd). Thus odd integers are not closed under
addition. Similar statements could be made about rational vs. irrational numbers under addition or nonzero
rational vs. irrational under multiplication.

Modular Arithmetic: Let n be a positive integer. Then the equivalence classes modulo n, denoted Zn, form a
finite abelian group under addition mod n. On the other hand, they do not form a group under multiplication
mod n. But just like the other number systems, if we toss out elements without multiplicative inverses, we are
left with a group under multiplication mod n. In particular, Z×n = U(Zn) = U(n) = {k ∈ Zn | gcd(k, n) = 1}
(classes mod n whose representatives are relatively prime to the modulus n) form a finite abelian group
under multiplication mod n.

Vector Spaces: Vector spaces are abelian groups under addition with the zero vector being the identity. For
example, Rn is an abelian group under addition.

New from Old: When R = Z, Q, R, C, or Z` (for some fixed positive integer `)†, we can add Rn (n-tuples with
entries in R), Rm×n (m × n matrices with entries in R), R[x] (polynomials with coefficients in R). In each
case we get an abelian group under addition.

If we consider Rn×n (square matrices), we can also multiply. If we just consider invertible matrices, GLn(R) =
{A ∈ Rn×n | det(A)−1 exists } (the general linear group of n × n matrices with entries in R), we obtain a
nonabelian (for n ≥ 2) group under matrix multiplication whose identity is the identity matrix.

In particular, GLn(R) = {A ∈ Rn×n | det(A) 6= 0}, GLn(Z) = {A ∈ Rn×n | det(A) = ±1}, and GLn(Z`) =
{A ∈ Rn×n | gcd(det(A), `) = 1}.

∗This is already guaranteed by demanding the binary operation ∗ maps into G.
†More generally we just let R be any commutative ring with 1.
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Also, for each of these R’s, SLn(R) = {A ∈ Rn×n | det(A) = 1} (the special linear group of n× n matrices
with entries in R) is also a group under matrix multiplication.

Functions and Symmetries: If X is some set, the collection of all invertible functions from X to itself, denoted
S(X) = {f : X → X | f is one-to-one and onto } (permutations on X) is a nonabelian (when |X| > 2)
group under function composition. In particular, Sn = S({1, 2, . . . , n}) is permutations on n items (aka the
symmetric group). Permutation groups play a large role in group theory.

If we limit ourselves to permutations that preserve some kind of structure, we get groups of symmetries.
For example, given a regular n-gon X, Dn = {f : R2 → R2 | f is an isometry sending X to itself }‡ (the
dihedral group of order 2n) is all symmetries of the regular n-gon X. Thus D3 is symmetrices of an equilateral
triangle, D4 is symmetrices of a square, etc.

Quaternions: There is a way to “Cayley-Dickson double” the complex numbers to a generalized number system
called the quaternions, H = {a+ bi+ cj +dk | a, b, c, d ∈ R}. This system has an addition and multiplication
similar to the complex numbers except multiplication is not commutative. Within this system we have
Q = {±1,±i,±j,±k} (the quaternion group of order 8). This is a nonabelian group under multiplication
where −1 flips signs, i2 = j2 = k2 = −1 (so i, j, k act like

√
−1) and finally, ij = k, jk = i, and ki = j

whereas ji = −k, kj = −i, and ik = −j. In other words, multiplying i’s, j’s, and k’s works just like the
cross product that you may have seen in multivariable calculus or physics.

Notation:
• Most of the time our operations are called “addition” or “multiplication”. Typically, an additive identity

is called “0” and a multiplicative identity is called “1”. But there are exceptions – the symmetric group’s
identity is called (1) and the identity of GLn(R) is In (the identity matrix). For a general abstract group,
we often use “e” to denote the identity.

• When working in an abstract group, we use multiplicative notation by default. We usually write ab for the
product of a and b (this is “juxtaposition” notation) instead of a ∗ b or a · b or a× b. Since additive notation
will trick you into using the commutative law (without noticing), we don’t use “+” expect for abelian groups.
Note: When using additive notation, we also use subtraction as shorthand for: a− b = a + (−b) (a plus the
additive inverse of b).

• Exponents? Let G be a group with identity e. Also, let a, b ∈ G and m,n ∈ Z.

Multiplicative Notation: a0 = e, a1 = a, a2 = aa, a3 = aaa. In general, if n > 0, then an = aa · · · a︸ ︷︷ ︸
n−times

. For

negative exponents, a−1 is a’s inverse. a−2 = a−1a−1 and a−3 = a−1a−1a−1. In general, if n > 0, then
a−n = a−1a−1 · · · a−1︸ ︷︷ ︸

n−times

. A few laws of exponents: aman = am+n and (am)n = amn.

Careful! In general, (ab)n 6= anbn (unless a and b commute). However, we do have (ab)−1 = b−1a−1.

Additive Notation: Additive exponents are written in front of the element. Sometimes we call these
“multiples” instead of exponents. 0a = e (the identity). 1a = a, 2a = a + a, and 3a = a + a + a.
In general, if n > 0, then na = a + a + · · ·+ a︸ ︷︷ ︸

n−times

. For negative exponents, (−1)a = −a (that is a’s

inverse). −2a = (−a) + (−a) and −3a = (−a) + (−a) + (−a). In general, if n > 0, then (−n)a =
(−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸

n−times

. A few laws of exponents: ma+na = (m+n)a and n(ma) = (nm)a. Since we

only use + when the operation is commutative, we also have: n(a+ b) = na+ nb. Keep in mind that
this works because we are assuming that a and b commute. For example: (−1)(a+ b) = (−1)a+ (−1)b.
Notice that the left hand side is −(a + b) which is the inverse of a + b. On the other hand, the right
hand side is (−a)+(−b) this is the inverse of a plus the inverse of b. If + wasn’t commutative we would
still have −(a + b) = (−b) + (−a).

‡An isometry is a distance and angle preserving invertible function.
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