- Due: Fri., Jan. 23rd, 2015
- 1. Determine which of the following sets with operations are groups. If it is a group, state its identity, what the inverse of a typical element looks like, and determine if it is Abelian. If it is not a group, state which axioms hold and give counter-examples for those which fail (don't forget closure).
 - (a) $(\mathbb{Q}_{>0},+)$ non-negative rationals with addition
 - (b) $(\mathbb{R}_{>0}, \cdot)$ positive reals with multiplication
 - (c) $(\mathbb{Z}, -)$ integers with subtraction
 - (d) $(5\mathbb{Z}, +)$ multiples of 5 (i.e. $0, \pm 5, \pm 10, \ldots$) with addition
 - (e) $(\mathbb{Q}_{<0}, \cdot)$ negative rationals with multiplication
- 2. Let G be a group. Show that G is Abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- 3. Create a Cayley table for $D_3 = \{R_0, R_{120}, R_{240}, D, D', V\}$ (symmetries of an equilateral triangle). Is D_3 Abelian?

Find the inverse of each element $(R_0^{-1} = ????, R_{120}^{-1} = ????, \text{ etc.}).$

