Homework #5 Due: Fri., Mar. 5th, 2021 Please remember when submitting any work via email or in person to... ## **PUT YOUR NAME ON YOUR WORK!** #1 Let $\sigma = (123)(45)$. Fill out the following table: | au = | (1432)(56)(254) | (1234)(1423)(246) | (12)(345)(1357) | |---|-----------------|-------------------|-----------------| | τ simplified (as disjoint cycles): | | | | | The order of τ : $ \tau =$ | | | | | The inverse of τ : $\tau^{-1} =$ | | | | | τ as a product of transpositions: | | | | | τ conjugated by σ : $\sigma \tau \sigma^{-1} =$ | | | | | A power of τ : $\tau^{99} =$ | | | | ## #2 Orders in S_n . (a) What are the orders of the elements in S_7 ? Give an example of an element with each order. - (b) Does S_{10} have an element of order 30? If so, find one. If not, explain why not. - (c) Does S_{10} have an element of order 25? If so, find one. If not, explain why not. ## **RESUBMIT** Type up Homework #4 Problems #4 and its solution in LATEX. Let $x, y \in G$ (for some group G). If there exists some $g \in G$ such $gxg^{-1} = y$, we say x and y are conjugates. - (a) Let $y = gxg^{-1}$ for some $g \in G$. Show that |x| = |y| (i.e. conjugates have the same order). **Note:** You will need to know that $(gxg^{-1})^k = gx^kg^{-1}$ for every non-negative integer k. I let you get away with informal justifications on original submissions. This time I would like you to include a careful proof of this fact (use induction on k). - (b) Prove or give a counterexample: $\langle x \rangle = \langle gxg^{-1} \rangle$ (where $x, g \in G$). In other words, is it true or not that conjugates generate the same cyclic subgroup? When typing this problem up, please write carefully: Restate the problem. Write in complete sentences.