Homework #8

Due: Mon., Mar. 29th, 2021

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 Recall that the center of a group is a normal subgroup. $Z = Z(D_6) = \{1, x^3\}$ where $D_6 = \{1, x, \dots, x^5, y, xy, \dots, x^5y\}$. Find the distinct cosets of Z in D_6 then write down a Cayley table for D_6/Z . Is D_6/Z abelian? Is it cyclic? Explain your answer.
- #2 Quotients in \mathbb{Z}_n .
 - (a) Let $H = \langle 20 \rangle \subseteq \mathbb{Z}_{50}$. First, list off the elements of H (i.e., $H = \{???\}$). Then compute the cosets of H in \mathbb{Z}_{50} . Write down a Cayley table for \mathbb{Z}_{50}/H . What familiar group is this isomorphic to?
 - (b) Let k, ℓ, n be positive integers such that $n = k\ell$ (i.e. ℓ divides n). In class, we mentioned that in such a case we have $\mathbb{Z}_n/\langle \ell \rangle \cong \mathbb{Z}_\ell$. Prove this using the map $\varphi : \mathbb{Z}_n \to \mathbb{Z}_\ell$ defined by $\varphi(x) = x$ and the first isomorphism theorem.

Note: You need to show φ is a **well-defined** homomorphism. Then you need to compute its kernel and image. Finally, apply the first isomorphism theorem.

#3 Let
$$\varphi: D_n \to \{\pm 1\}$$
 be defined by $\varphi(x) = \left\{ \begin{array}{ll} +1 & x \text{ is a rotation} \\ -1 & x \text{ is a reflection} \end{array} \right.$

Show that φ is a homomorphism. What is the kernel of φ ? What does the first isomorphism theorem tell us here?

#4 Let G be a finite group, H a normal subgroup of G, and $g \in G$. Show that |gH| divides |g| (in G).

Note: In this problem, |gH| means the order of the element gH in the quotient group G/H (as opposed to the cardinality of gH as a set).

Unnecessary Note: The assumption that G is finite is totally unnecessary if one uses the standard convention that all positive integers as well as infinity itself divide infinity.

- #5 Let G and H be finite groups and let $\varphi: G \to H$ be an epimorphism (this is a homomorphism which is onto). Suppose that there is some $x \in H$ such that |x| = 8. Prove that G has an element of order 8 as well.
- **RESUBMIT** Type up Homework #7 Problem #4(a) and its solution in LATEX.

Let G and H be groups. Show $\{e\} \times H = \{(e,h) \mid h \in H\}$ is a normal subgroup of $G \times H$ (where e is the identity of G).

Note: You need to show that $\{e\} \times H$ is a subgroup AND that it's normal in $G \times H$.

When typing this problem up, please write carefully: Restate the problem. Write in complete sentences.