Due: Fri., Apr. 16th, 2021

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 In each of the following rings, R, state the characteristic of the ring. If R has unity, give an example of a unit and its inverse (other than 1 itself). If no unit exists, explain why not. If R has zero divisors, give an example of a zero divisor. If no zero divisors exist, explain why not.
 - (a) $R = \mathbb{Z}_{10} \times \mathbb{Z}_{15}$
 - (b) $R = 99\mathbb{Z} = \{99k \mid k \in \mathbb{Z}\} \text{ (multiples of 99)}$
 - (c) $R = (\mathbb{Z}_7)^{2 \times 2}$ (2 × 2 matrices with entries in \mathbb{Z}_7)
- #2 Let R be a ring with 1. Let u be a unit and z be a zero divisor. Prove that both uz and zu are zero divisors.

Note: Argue carefully. You will need to write separate arguments for the cases where z is a left zero divisor and where z is a right zero divisor.

#3 Let $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ where $i^2 = -1$ (i.e., $i = \sqrt{-1}$).

This is the ring of Gaussian integers. This ring is equipped with an extra tool called an algebraic *norm*. We define the normal of z=a+bi by $N(z)=z\bar{z}=(a+bi)(a-bi)=a^2+b^2$. Notice that $N(z)\in\mathbb{Z}_{\geq 0}$. A very helpful observation is that for any $w,z\in\mathbb{Z}[i]$, we have N(wz)=N(w)N(z).

- (a) Prove $\mathbb{Z}[i]$ is a subring of \mathbb{C} .
- (b) When is N(z) = 0? When is N(z) = 1?
- (c) If $u \in U(\mathbb{Z}[i])$, then what can be said about N(u)? [Hint: Consider $N(uu^{-1})$.] Determine $U(\mathbb{Z}[i])$.
- (d) Prove that $\mathbb{Z}[i]$ has no zero divisors. [Hint: Use the norm.]

Note: Since $\mathbb{Z}[i]$ is a commutative ring with $1 \neq 0$ and it has no zero divisors, it is an *integral domain*.

#4 Prove that $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}\$ is a field.

Hints: Use a subring test to show it is a ring. Use a "conjugate trick" to compute multiplicative inverses.