Due: Fri., Jan. 26th, 2024 Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- **#1.** Group axiom basics.
 - (a) We know how to add, subtract, multiply, and divide real numbers: \mathbb{R} . In addition, we now know that \mathbb{R} is a group under addition. Explain why each of these other operations fails to make \mathbb{R} into a group.

Give concrete counterexamples.

Example: If I wanted to show \mathbb{Z} is not a group under multiplication, I would say something like "The integers, Z, do not form a group under multiplication because of a lack of multiplicative inverses. For example, $2 \in \mathbb{Z}$ but $2^{-1} = \frac{1}{2} \notin \mathbb{Z}$."

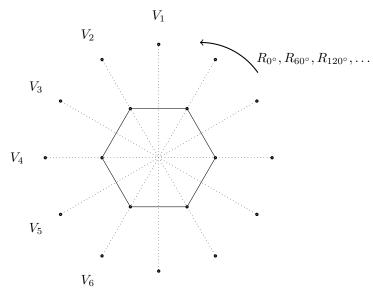
(b) Let's equip \mathbb{Z} with a really weird operation: $x \circ y = x + y + 3$. For example, $-1 \circ 5 = -1 + 5 + 3 = 7$ and $(x \circ y) \circ z = (x + y + 3) \circ z = (x + y + 3) + z + 3 = x + y + z + 6.$

Obviously, \mathbb{Z} is closed under \circ . Show \mathbb{Z} is a group under this operation.

You need to show o is associative, has an identity, and elements have inverses.

Also, is \mathbb{Z} equipped with \circ an abelian group?

- #2. Let G be a group with identity $e \in G$. In general, the law of exponents $(ab)^n = a^n b^n$ may fail to hold.
 - (a) Give a concrete example of a group G and elements $a, b \in G$ where $(ab)^2 \neq a^2b^2$.
 - (b) Prove G is an abelian group if and only if for all $a, b \in G$, $(ab)^2 = a^2b^2$. Note: This is an "if and only if" statement. You need to prove two implications.
- #3. Consider the dihedral group $D_6 = \{R_{0^{\circ}}, R_{60^{\circ}}, R_{120^{\circ}}, R_{180^{\circ}}, R_{240^{\circ}}, R_{300^{\circ}}, V_1, V_2, V_3, V_4, V_5, V_6\}$ (symmetries of a regular hexagon). [Rotations are done counter-clockwise and reflections are labeled in the picture below.]



- (a) Compute $V_1R_{60^{\circ}}$, $R_{180^{\circ}}V_4$, and V_3V_6 . [Draw some pictures!]
- (b) Is D_6 Abelian? Why or why not?
- (c) Make a table of inverses and orders for each element:

Element:	g =	$R_{0^{\circ}}$	$R_{60^{\circ}}$	$R_{120^{\circ}}$	$R_{180^{\circ}}$	$R_{240^{\circ}}$	$R_{300^{\circ}}$	V_1	V_2	V_3	V_4	V_5	V_6
Inverse: g	$g^{-1} =$???											
Order:	g =	???											

Note: Recall that the order of an element g is the smallest positive power n such that g^n is the identity. If no such power exists the order of g is ∞ .