Due: Fri., Feb. 2nd, 2024

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1 Workin' mod 9.

(a) Create (and fill) a table as follows (if an entry is undefined, write "DNE" = does not exist):

element $x =$	0	1	2	3	4	5	6	7	8
additive inverse $-x =$	0								
additive order $ x =$	1								
mutiplicative inverse $x^{-1} =$	DNE								
multiplicative order $ x =$	DNE								

Note: Additive inverses and orders go with the group structure of $(\mathbb{Z}_9, + \text{mod } 9)$ whereas the multiplicative inverses and orders go with the group structure of $(U(9), \cdot \text{mod } 9)$.

(b) Compute $3^{1234} + (11 - 33) \cdot 2^{-4} \pmod{9}$.

(c) Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

Explain why A does not belong to $GL_2(\mathbb{Z}_8)$.

Then explain why A does belong to $GL_2(\mathbb{Z}_9)$ and compute A^{-1} .

#2 Use the extended Euclidean Algorithm to find 773^{-1} in U(2332).

Show your work. Simplify your answer (your answer should be a number between 0 and 2331).

#3 Let $a, b, x, y \in \mathbb{Z}$ such that ax + by = 15. What can be said about gcd(a, b)?

Suppose in addition we have gcd(x, y) = 15, then prove a and b are relatively prime.

#4 Let $a, b, c \in \mathbb{Z}$. Assume a divides b and a divides c. Also, suppose b and c are relatively prime (i.e., gcd(b, c) = 1). Show a divides bc.

Hint: Use an integer linear combination involving b and c then multiply that by bc.

#5 RESUBMIT Type up Homework #1 Problem #2 and its solution in LATEX.

Let G be a group with identity $e \in G$.

- (a) Give a concrete example of a group G and elements $a, b \in G$ where $(ab)^2 \neq a^2b^2$.
- (b) Prove G is an abelian group if and only if for all $a, b \in G$, $(ab)^2 = a^2b^2$.

When typing this problem up, write it up carefully: Restate the problem. Write in complete sentences.