Due: Fri., Feb. 9th, 2024 Please remember when submitting any work via email or in person to... ## PUT YOUR NAME ON YOUR WORK! #1 A function problem. Recall that for a function $h: X \to Y$, if $A \subseteq X$ and $B \subseteq Y$, then... $$h(A) = \{h(x) \mid x \in A\} \subseteq Y$$ and $h^{-1}(B) = \{x \in X \mid h(x) \in B\} \subseteq X$ (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = |2 - x| + 2. Suggestion: Start off by making a table of values of f(x) for small x's to see what outputs look like. - i. Explain why f is not 1-1. - ii. Explain why f is not onto. - iii. Let $A = \{-2, -1, 0, 1, 2, 3, 4\}$. Find $f(A) = \{f(x) \mid x \in A\}$. (This is the image of the set A under the map f.) iv. Let $B = \{0, 1, 2, 3, 4, 5\}$. Find $f^{-1}(B) = \{x \in \mathbb{Z} \mid f(x) \in B\}$. (This is the inverse image of B under the map f.) (b) Let $g: X \to Y$. For $A, B \subseteq X$ show $g(A \cap B) \subseteq g(A) \cap g(B)$. Then for $C, D \subseteq Y$ show $g^{-1}(C \cup D) = g^{-1}(C) \cup g^{-1}(D)$. #2 Dihedral groups: generators and relations style. Recall that ... $$D_n = \langle x, y \mid x^n = 1, y^2 = 1, \text{ and } (xy)^2 = 1 \rangle = \{1, x, x^2, \dots, x^{n-1}, y, xy, x^2y, \dots, x^{n-1}y\}$$ - (a) Write down the Cayley table for D_4 . - (b) Fill out the following table for D_8 : | element $g =$ | 1 | x | x^2 | x^3 | x^4 | x^5 | x^6 | x^7 | y | xy | x^2y | x^3y | x^4y | x^5y | x^6y | x^7y | |--------------------|---|---|-------|-------|-------|-------|-------|-------|---|----|--------|--------|--------|--------|--------|--------| | inverse $g^{-1} =$ | 1 | | | | | | | | | | | | | | | | | order $ g =$ | 1 | | | | | | | | | | | | | | | | (c) Simplify $x^{10}y^{-5}x^{-2}y^{48}x^3$ in D_7 . #3 Let $$H = \left\{ \begin{bmatrix} 1 & 0 \\ 3a & 1 \end{bmatrix} \middle| a \in \mathbb{Z} \right\}$$. Show H is a subgroup of $\mathrm{GL}_2(\mathbb{Z})$. #4 Let G be an abelian group and $K = \{g \in G \mid \text{the order of } g \text{ divides } 2\}.$ - (a) Show K is a subgroup of G. - (b) Give an example of a non-abelian group G where K (defined the same way) is not a subgroup. #5 RESUBMIT Type up Homework #2 Problem #4 and its solution in LATEX. Let $a, b, c \in \mathbb{Z}$. Assume a divides b, a divides c, and gcd(b, c) = 1 (i.e., b and c are relatively prime). Show a divides bc. When typing this problem up, write it up carefully: Restate the problem. Write in complete sentences.