Homework #6

Due: Wed., Mar. 6th, 2024 Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1 The following pairs of groups are **not** isomorphic. Prove it.

Hint/Note: Find a (group) property that does not match.

- (a) $\mathbb{R}^{2\times 2}$ and $GL_2(\mathbb{R})$
- (b) U(25) and D_{10}
- (c) A_5 and D_{30}
- (d) $\mathbb{R}_{\neq 0}$ and $\mathbb{C}_{\neq 0}$ (non-zero reals and complex numbers both under multiplication)

#2 The following pairs of groups are isomorphic. Prove it.

- (a) U(14) and \mathbb{Z}_6 Hint: You could cite a theorem and prove this in one line.
- (b) $G = \left\langle \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \right\rangle = \left\{ \begin{bmatrix} a & 2a \\ 0 & 3a \end{bmatrix} \middle| a \in \mathbb{Z} \right\}$ is a (cyclic) subgroup of $\mathbb{Z}^{2 \times 2}$ (2 × 2 matrices with integer entries are a group under matrix addition). Show $G \cong \mathbb{Z}$.

Note: You need to come up with an isomorphism, $\varphi: G \to \mathbb{Z}$, and prove it is an isomorphism.

#3 Cayley's theorem tells us that $D_3 = \langle x, y \mid x^3 = 1, y^2 = 1, (xy)^2 = 1 \rangle = \{1, x, x^2, y, xy, x^2y\}$ is isomorphic to a subgroup of S_6 (since $|D_3| = 2 \cdot 3 = 6$. Find such a subgroup using the ordering of elements: $1, x, x^2, y, xy, x^2y$ (so, for example, x^2 is element #3). To help you get started, left multiplication by x is $1 \mapsto x$, $x \mapsto x^2$, $x^2 \mapsto 1$, $y \mapsto xy$, $xy \mapsto x^2y$, and $x^2y \mapsto y$ which means $\#1 \mapsto \#2$, $\#2 \mapsto \#3$, etc. This is the permutation (123)(456). So $D_3 \cong \{(1), (123)(456), ???\}.$