Homework #7

Due: Mon., Mar. 25th, 2024

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 Suppose H and K are subgroups of some group G such that |H| = 66 and |K| = 42. Just considering divisibility criteria coming from Lagrange's Theorem, what is the largest size the subgroup $H \cap K$ could be? Suppose M contains both H and K. What is the smallest size M could be?
- #2 Direct products.1
 - (a) Find the order of (6,2,-k) in $\mathbb{Z}_{22} \times U(9) \times Q$ where $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group.
 - (b) Explain why $\mathbb{Z}_{20} \cong \mathbb{Z}_4 \times \mathbb{Z}_5$ but $\mathbb{Z}_{20} \ncong \mathbb{Z}_2 \times \mathbb{Z}_{10}$. In addition, list the distinct orders of elements in both $\mathbb{Z}_4 \times \mathbb{Z}_5$ and $\mathbb{Z}_2 \times \mathbb{Z}_{10}$. Give an example of an element of each such order.
- #3 Let H and K be normal subgroups of G. Show that $HK = \{hk \mid h \in H \text{ and } k \in K\}$ is a normal subgroup of G. You need to run through the normal subgroup test.

Note: It may be helpful to note that HK = KH. Why? Given $x \in HK$, we have x = hk for some $h \in H$ and $k \in K$. Therefore, $x = hk \in Hk$. But H is a normal subgroup of G so that Hk = kH. Therefore, $x \in kH$ so that there exists some $h' \in H$ such that x = kh'. In other words, $x \in KH$. This shows that $HK \subseteq KH$. The proof of the other containment is similar. For a slicker proof: $HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$ (where the middle step used that H is normal and thus its left and right cosets match).

#4 Let $H = \{1, x^3, y, x^3y\} \subseteq D_6 = \{1, x, \dots, x^5, y, xy, \dots, x^5y\} = \langle x, y \mid x^6 = 1, y^2 = 1, xyxy = 1 \rangle$. Make a table showing H is closed under D_6 's operation (thus is a subgroup by the finite subgroup test).

What is $[D_6: H]$ (i.e. the index of H in D_6)?

Find all of the left and right cosets of H in D_6 . Is H a normal subgroup of D_6 ?

- #5 Let G and H be groups.
 - (a) Show $\{e\} \times H = \{(e,h) \mid h \in H\}$ is a normal subgroup of $G \times H$ (where e is the identity of G). Note: You need to show that $\{e\} \times H$ is a subgroup AND that it's normal.
 - (b) Show $G \times H \cong H \times G$.

¹Gallian uses $G \oplus H$ for direct products. I will use the more standard $G \times H$ notation.