Homework #8

Due: Mon., Apr. 1st, 2024 Wed., Apr. 3rd, 2024

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 Let $H = \langle x^2 \rangle = \{1, x^2, x^4, x^6\} \subseteq D_8 = \langle x, y \mid x^8 = 1, y^2 = 1, (xy)^2 = 1 \rangle = \{1, x, \dots, x^7, y, xy, \dots, x^7y\}.$
 - (a) Compute the (distinct) left and right cosets of H to confirm this is a normal subgroup of D_8 .
 - (b) Write down a Cayley table for D_8/H .
 - (c) Is D_8/H abelian? Is it cyclic? Explain you answers.
- #2 Quotients in \mathbb{Z}_n .
 - (a) Let $H = \langle 18 \rangle \subseteq \mathbb{Z}_{30}$.
 - i. List the elements of H (i.e., $H = \{???\}$) and explain why it is a normal subgroup of \mathbb{Z}_{30} .
 - ii. Compute the (distinct) cosets of H in \mathbb{Z}_{30} .
 - iii. Write down a Cayley table for \mathbb{Z}_{30}/H . What familiar group is this isomorphic to?
 - (b) Consider $k, \ell, n \in \mathbb{Z}_{>0}$ where $n = k\ell$. We attempt to define a function $\varphi : \mathbb{Z}_n \to \mathbb{Z}_\ell$ by $\varphi(x) = x$. [Using more precise notation: $\varphi(x + n\mathbb{Z}) = x + \ell\mathbb{Z}$.]

Prove that φ is a well-defined homomorphism.

Determine φ 's kernel and image. Then apply the first isomorphism theorem.

- #3 Recall $GL_n(\mathbb{R})$ (equipped with matrix multiplication) is the group of $n \times n$ invertible matrices. Also, recall $\mathbb{R}_{\neq 0}$ is a group under multiplication. Explain why the determinant map, $\det : GL_n(\mathbb{R}) \to \mathbb{R}_{\neq 0}$, is a homomorphism. Show det is onto. What is its kernel? What does the first isomorphism theorem say here?
- #4 Let $H \triangleleft G$ where G is a finite group. Suppose $xH \in G/H$ and xH is an element of order m in G/H. Show that G must have an element of order m.

Warning: Just because xH has order m (in G/H) does not mean x has order m in G. So x itself might not work, but the right power of x will.

#5 RESUBMIT Type up Homework #7 Problem #5(a) and its solution in LATEX.

Let G and H be groups.

Show $\{e\} \times H = \{(e,h) \mid h \in H\}$ is a normal subgroup of $G \times H$ (where e is the identity of G).

Note: You need to show that $\{e\} \times H$ is a subgroup AND that it's normal in $G \times H$.

When typing this problem up, please write carefully: Restate the problem. Write in complete sentences.