Homework #5

Revision Problem

[Type up Homework #4 Problems #4 and its solution in IAT_{EX} .]

Name: My Name Goes Here

Let $x, y \in G$ (for some group G). If there exists some $g \in G$ such $gxg^{-1} = y$, we say x and y are conjugates.

(a) Let $y = gxg^{-1}$ for some $g \in G$. Show that |x| = |y| (i.e. conjugates have the same order).

First, we must prove a lemma:

Lemma: Let $x, g \in G$ (for some group G) and k is a non-negative integer. Then $(gxg^{-1})^k = gx^kg^{-1}$.

Proof: We proceed by induction.

- First, we show our base case holds. When k = 0, BASE CASE HERE.
- Next, we make the inductive assumption that $(gxg^{-1})^k = gx^kg^{-1}$ holds for some non-negative integer k. Then STUFF GOES HERE showing this holds for k + 1.

Therefore, by induction $(gxg^{-1})^k = gx^kg^{-1}$ holds for every non-negative integer k. \Box

Proposition: Let $y = gxg^{-1}$ for some $g \in G$. Show that |x| = |y| (i.e. conjugates have the same order). **Proof:** MY PROOF GOES HERE. \Box

(b) Prove or give a counterexample: $\langle x \rangle = \langle gxg^{-1} \rangle$ (where $x, g \in G$). In other words, is it true or not that conjugates generate the same cyclic subgroup?

Consider BLAH BLAH. Therefore, BLAH.