Homework #6

Due: Wed., Mar. 5th, 2025

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

- #1 Cayley's theorem tells us that $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ is isomorphic to a subgroup of S_8 . Find such a subgroup using the ordering of elements: 1, -1, i, -i, j, -j, k, -k (so, for example, i is element #3). To help you get started, left multiplication by -1 sends 1 to -1, -1 to 1, i to -i, etc. so it sends 1 to 2, 2 to 1, 3 to 4, etc. Thus -1 corresponds with (12)(34)(56)(78).
- #2 The following pairs of groups are isomorphic. Prove it.
 - (a) U(7) and \mathbb{Z}_6

Hint: You could cite a theorem and prove this in one line.

(b)
$$H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Q} \right\}$$
 and \mathbb{Q}

Note: You need to come up with an isomorphism, $\varphi: H \to \mathbb{Q}$, and prove it is an isomorphism.

#3 The following pairs of groups are <u>not</u> isomorphic. Prove it.

Hint/Note: Find a (group) property that does not match.

- (a) \mathbb{Z}_{246} and D_{123}
- (b) $(\mathbb{Z}_{99})^{2\times 2}$ and $GL_2(\mathbb{Z})$
- (c) A_4 and D_6
- (d) $\mathbb{R}_{\neq 0}$ and $\mathbb{C}_{\neq 0}$ (non-zero reals and complex numbers both under multiplication)
- #4 Let $\varphi: G_1 \to G_2$ be an isomorphism
 - (a) Show $\varphi(\langle g \rangle) = \langle \varphi(g) \rangle$ for any $g \in G_1$. [This implies that G_1 is cyclic iff G_2 is cyclic.]
 - (b) Let K be a subgroup of G_2 . Show that $\varphi^{-1}(K) = \{g \in G_1 \mid \varphi(g) \in K\}$ is a subgroup of G_1 .