Jean Gaston Darboux provides us with a useful characterization of Riemann integrability. Instead of stating an integrability condition based on a generalized kind of limit, Darboux's condition is stated in terms of supremums and infimums.

Notation: Let $a, b \in \mathbb{R}$ with a < b. Suppose that $f : [a, b] \to \mathbb{R}$ is a **bounded** function. Given a partition $\mathcal{P} = \{x_0, \dots, x_n\} \text{ of } [a, b] \text{ (i.e., } a = x_0 < x_1 < \dots < x_n = b), \text{ let } \Delta x_i = x_i - x_{i-1} \text{ (i.e., the width of the } i^{\text{th}}\text{-subinterval}).$ $||P|| = \max\{\Delta x_1, \ldots, \Delta x_n\}$ is the norm (or mesh size) of the partition. A sampling for \mathcal{P} is a set $\mathcal{S} = \{s_1, \ldots, s_n\}$ where for each $i, s_i \in [x_{i-1}, x_i]$. Finally, $RS(f, \mathcal{P}, \mathcal{S}) = \sum_{i=1}^n f(s_i) \Delta x_i$ is the Riemann sum of f relative to the partition \mathcal{P} and sampling \mathcal{S} .

Definition: Let $\mathcal{P} = \{x_0, \dots, x_n\}$ be a partition with $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$ and $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$ (these numbers exist because f is bounded). We define...

Upper Darboux Sum:
$$U(f, \mathcal{P}) = \sum_{i=1}^{n} M_i \Delta x_i$$
 Lower Darboux Sum: $L(f, \mathcal{P}) = \sum_{i=1}^{n} m_i \Delta x_i$

Let S be some sampling relative to \mathcal{P} . Then $m_i \leq f(s_i) \leq M_i$ (by definition of infimum and supremum), so $L(f, \mathcal{P}) \leq RS(f, \mathcal{P}, \mathcal{S}) \leq U(f, \mathcal{P}).$

Lemma: Given a partition \mathcal{P} , for every $\epsilon > 0$ there exists a sampling \mathcal{S}_1 such that $U(f, \mathcal{P}) - \mathrm{RS}(f, \mathcal{P}, \mathcal{S}_1) < \epsilon$ and a sampling S_2 such that $RS(f, \mathcal{P}, S_2) - L(f, \mathcal{P}) < \epsilon$.

proof: Consider $\epsilon/(n\Delta x_i) > 0$. There exists some $s_i \in [x_{i-1}, x_i]$ such that $M_i - f(s_i) < \epsilon/(n\Delta x_i)$ because

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x). \text{ This gives us our sampling } \mathcal{S}_{1} = \{s_{1}, \dots, s_{n}\}.$$

$$U(f, \mathcal{P}) - \text{RS}(f, \mathcal{P}, \mathcal{S}_{1}) = \sum_{i=1}^{n} M_{i} \Delta x_{i} - \sum_{i=1}^{n} f(s_{i}) \Delta x_{i} = \sum_{i=1}^{n} (M_{i} - f(s_{i})) \Delta x_{i} < \sum_{i=1}^{n} \frac{\epsilon}{n \Delta x_{i}} \Delta x_{i} = \sum_{i=1}^{n} \frac{\epsilon}{n} = \epsilon$$

The proof for the lower sum is similar.

Definition:

Upper Darboux Integral:
$$\overline{\int_a^b} f = U(f) = \inf\{U(f, \mathcal{P} \mid \mathcal{P} \text{ is a partition}\}\$$

Lower Darboux Integral: $\int_a^b f = L(f) = \sup\{L(f, \mathcal{P} \mid \mathcal{P} \text{ is a partition}\}\$

Notice that the set of upper sums is bounded below by lower sums and vice-versa. Therefore, these upper and lower integrals always exist. We can think of $U(f,\mathcal{P})$ as an overestimate of the integral of f and $L(f,\mathcal{P})$ as an underestimate. So more-or-less, this makes U(f) the lowest of all of the overestimates and L(f) the highest of all the underestimates.

Definition: Adding more points to a partition yields a **refinement**. In particular, if \mathcal{P} and \mathcal{P}' are partitions such that $\mathcal{P} \subseteq \mathcal{P}'$, we say that \mathcal{P}' is a refinement of \mathcal{P} .

Notice that if \mathcal{P}_1 and \mathcal{P}_2 are partitions, then $\mathcal{P}_1 \cup \mathcal{P}_2$ is a *common refinement* of both \mathcal{P}_1 and \mathcal{P}_2 . Also, it should be obvious that if $M = \sup_{x \in [z_0, z_m]} f(x)$ and $M_i = \sup_{x \in [z_{i-1}, z_i]} f(x)$, then $M = \max\{M_1, \dots, M_n\}$. This means that

 $M(z_n - z_0) = \sum_{i=1}^n M\Delta z_i \ge \sum_{i=1}^n M_i \Delta z_i$. A similar statement follows for infimums. Thus we have that...

Lemma: Given a refinement of partitions $\mathcal{P} \subseteq \mathcal{P}'$, we have...

$$L(f, \mathcal{P}) \le L(f, \mathcal{P}') \le U(f, \mathcal{P}') \le U(f, \mathcal{P})$$

In particular, given any two partitions, \mathcal{P}_1 and \mathcal{P}_2 , we have...

$$L(f, \mathcal{P}_1) \leq L(f, \mathcal{P}_1 \cup \mathcal{P}_2) \leq U(f, \mathcal{P}_1 \cup \mathcal{P}_2) \leq U(f, \mathcal{P}_2)$$

Therefore, every lower sum is a lower bound for all upper sums and every upper sum is an upper bound for all lower sums. This then implies that $L(f, \mathcal{P}_1) \leq U(f)$ and $L(f) \leq U(f, \mathcal{P}_2)$ (by the definitions of infimum and supremum). Thus U(f) is an upper bound for all lower sums and L(f) is a lower bound for all upper sums. Thus because L(f)and U(f) are greatest lower and least upper bounds, so for all partitions \mathcal{P}_1 and \mathcal{P}_2 ...

$$L(f, \mathcal{P}_1) \le L(f) \le U(f) \le U(f, \mathcal{P}_2)$$

Next, we a technical lemma. Its proof doesn't use anything fancy, it's just takes some effort to write down.

Lemma: Given a partition \mathcal{P}' and $\epsilon > 0$, there is some $\delta > 0$ such that for every partition \mathcal{P} with $\|\mathcal{P}\| < \delta$ we have $U(f,\mathcal{P}) - U(f,\mathcal{P} \cup \mathcal{P}') < \epsilon$. Similarly there is some $\delta > 0$ such that for every partition \mathcal{P} with $\|\mathcal{P}\| < \delta$ we have $L(f, \mathcal{P} \cup \mathcal{P}') - L(f, \mathcal{P}) < \epsilon$. Putting these facts together (pick the minimum of two δ 's), there is some $\delta > 0$ such that for every partition \mathcal{P} with $\|\mathcal{P}\| < \delta$ we have both $U(f,\mathcal{P}) - U(f,\mathcal{P} \cup \mathcal{P}') < \epsilon$ and $L(f,\mathcal{P} \cup \mathcal{P}') - L(f,\mathcal{P}) < \epsilon$.

proof: Let $M \in \mathbb{R}$ such that |f(x)| < M for all $x \in [a, b]$ (M exists because we assumed that f is bounded on [a, b]). Let $\mathcal{P}' = \{x_0, \dots, x_n\}$. Suppose $\epsilon > 0$ and let $\delta = \min\{\epsilon/(2nM), \Delta x_1, \dots, \Delta x_n\}$.

Consider any partition $\mathcal{P} = \{y_0, \dots, y_m\}$ such that $\|\mathcal{P}\| < \delta$. We want to analyze $\mathcal{P} \cup \mathcal{P}' = \{z_0, \dots, z_\ell\}$. Now $\|\mathcal{P}\| < \delta \le \min\{\Delta x_1, \ldots, \Delta x_n\}$ says that the largest gap between two y_i 's is smaller than the smallest gap between two x_k 's. This means that in $\mathcal{P} \cup \mathcal{P}'$ every $x_k \in \mathcal{P}'$ (other than x_0 and x_n) is surrounded by y_i 's from \mathcal{P} . In particular, our partition looks like:

$$a = x_0 = y_0 < y_1 < \dots < y_{i_1} \le x_1 < y_{i_1+1} < \dots < y_{i_2} \le x_2 < y_{i_2+1} < \dots < y_m = x_n = b$$

Let's consider each subinterval $[z_{i-1}, z_i]$.

Case 1: Suppose we move between y_k 's. That is, suppose $[z_{j-1}, z_j] = [y_{k-1}, y_k]$ for some k. Then...

$$\sup_{x \in [z_{j-1}, z_j]} f(x) \Delta z_j = \sup_{x \in [y_{k-1}, y_k]} f(x) \Delta y_k$$

So the corresponding terms in the summations $U(f, \mathcal{P})$ and $U(f, \mathcal{P} \cup \mathcal{P}')$ cancel out.

Case 2: Suppose we jump over an
$$x_k$$
. That is, $z_{j-1} = y_{i_k} < x_k = z_j < y_{i_k+1} = z_{j+1}$.
Let $M''' = \sup_{x \in [y_{i_k}, y_{i_k+1}]} f(x) = \sup_{x \in [z_{j-1}, z_{j+1}]} f(x)$, $M' = \sup_{x \in [y_{i_k}, x_k]} f(x) = \sup_{x \in [z_{j-1}, z_j]} f(x)$, and $M'' = \sup_{x \in [x_k, y_{i_k+1}]} f(x) = \sup_{x \in [z_{j-1}, z_{j+1}]} f(x)$. Then the $(i_k + 1)$ -st term in $U(f, \mathcal{P})$ is $M''' \Delta y_{i_k+1} = M'''(\Delta z_j + \Delta z_{j+1}) = M''' \Delta z_j + M''' \Delta z_{j+1}$ and

the j-th and (j+1)-st terms in $U(f, \mathcal{P} \cup \mathcal{P}')$ are $M'\Delta z_j$ and $M''\Delta z_{j+1}$. Now since M' and M'' are bounded above by M''' and the function itself is bounded by M, we have M'''-M' < M and M'''-M'' < M. Thus the difference between the (i_k+1) -st term in $U(f,\mathcal{P})$ and the j-th and (j+1)-st terms in $U(f,\mathcal{P}\cup\mathcal{P}')$ is $(M'''-M')\Delta z_j + (M'''-M'')\Delta z_{j+1} < M\Delta z_j + M\Delta z_{j+1} < 2M\|\mathcal{P}\cup\mathcal{P}'\| \le 2M\|\mathcal{P}\| < 2M\delta \le 2M\frac{\epsilon}{2nM} = \frac{\epsilon}{n}$.

So in the difference of upper sums, each case 1 occurrence contributes a 0 and each case 2 occurrence contributes at most ϵ/n . But case 2 can only occur (at most) n-times (each occurrence must involve some new x_k). Thus $U(f,\mathcal{P}) - U(f,\mathcal{P} \cup \mathcal{P}') < \frac{\epsilon}{n} \cdot n = \epsilon.$

The proof for lower sums is analogous.

Theorem: Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then f is Riemann integrable on [a,b] if and only if $\int_a^b f=\int_a^b f$. Moreover, in such a case, $\int_a^b f = \int_a^b f = \overline{\int_a^b f}$.

proof: Let
$$\underline{I} = \int_a^b f = L(f)$$
 and $\overline{I} = \overline{\int_a^b f} = U(f)$.

Suppose f be Riemann integrable on [a,b] and let $I=\int_a^b f$. Suppose $\epsilon>0$. There exists some partition \mathcal{P}' such that $U(f,\mathcal{P}') - \overline{I} < \epsilon/3$ since \overline{I} is a supremum. f is Riemann integrable so there exists some $\delta > 0$ such that $\|\mathcal{P}\| < \delta$ implies $|RS(f,\mathcal{P},\mathcal{S}) - I| < \epsilon/3$. Let $\mathcal{P}'' \supseteq \mathcal{P}'$ be a refinement such that $\|\mathcal{P}''\| < \delta$ (such refinements always exist – just union \mathcal{P}' with a suitable standard partition). Thus $|RS(f,\mathcal{P}'',\mathcal{S}'')-I|<\epsilon/3$. We have $\overline{I} \leq U(f, \mathcal{P}'') \leq U(f, \mathcal{P}')$ so that $U(f, \mathcal{P}'') - \overline{I} < \epsilon/3$. A previous lemma guarantees that there is some sampling S'' such that $U(f, \mathcal{P}'') - RS(f, \mathcal{P}'', S'') < \epsilon/3$. Therefore,

$$\begin{split} |I-\overline{I}| &= |I-\mathrm{RS}(f,\mathcal{P}'',\mathcal{S}'')+\mathrm{RS}(f,\mathcal{P}'',\mathcal{S}'')-U(f,\mathcal{P}'')+U(f,\mathcal{P}'')-\overline{I}|\\ &\leq |I-\mathrm{RS}(f,\mathcal{P}'',\mathcal{S}'')|+|\mathrm{RS}(f,\mathcal{P}'',\mathcal{S}'')-U(f,\mathcal{P}'')|+|U(f,\mathcal{P}'')-\overline{I}|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon \end{split}$$
 This holds for all $\epsilon>0$. Therefore, $I=\overline{I}$. Similarly, $I=\underline{I}$ so that $I=\overline{I}=\underline{I}$.

Now suppose that $I = \overline{I}$. Call this number $I = I = \overline{I}$. Let $\epsilon > 0$. Because the lower and upper sums are defined as a supremum and infimum, there are partitions \mathcal{P}_1 and \mathcal{P}_2 such that $U(f,\mathcal{P}_1) < I + \epsilon/2$ and $L(f,\mathcal{P}_2) > I - \epsilon/2$. Let $\mathcal{P}' = \mathcal{P}_1 \cup \mathcal{P}_2$. Then $I - \epsilon/2 < L(f, \mathcal{P}_2) \le L(f, \mathcal{P}') \le U(f, \mathcal{P}') \le U(f, \mathcal{P}_1) < I + \epsilon/2$.

Let $\delta > 0$ be the quantity given in our previous technical lemma such that for all partitions \mathcal{P} with $\|\mathcal{P}\| < \delta$ we have that both $U(f, \mathcal{P}) - U(f, \mathcal{P} \cup \mathcal{P}') < \epsilon/2$ and $L(f, \mathcal{P} \cup \mathcal{P}') - L(f, \mathcal{P}) < \epsilon/2$.

So let \mathcal{P} be a partition with $\|\mathcal{P}\| < \delta$ and let \mathcal{S} be a sampling. Then

$$\mathrm{RS}(f,\mathcal{P},\mathcal{S}) \leq U(f,\mathcal{P}) < U(f,\mathcal{P} \cup \mathcal{P}') + \frac{\epsilon}{2} \leq U(f,\mathcal{P}') + \frac{\epsilon}{2} < I + \frac{\epsilon}{2} + \frac{\epsilon}{2} = I + \epsilon$$

Likewise, $I - \epsilon < RS(f, \mathcal{P}, \mathcal{S})$ so that $I - \epsilon < RS(f, \mathcal{P}, \mathcal{S}) < I + \epsilon$. We have shown that for every $\epsilon > 0$ there is some $\delta > 0$ such that for all partitions \mathcal{P} with $\|\mathcal{P}\| < \delta$ and samplings \mathcal{S} , we have $|RS(f, \mathcal{P}, \mathcal{S}) - I| < \epsilon$. Therefore, f is Riemann integrable with $\int_a^b f = I = \overline{I} = \underline{I}$.