Math 3220 Darboux Integration March 2019

Jean Gaston Darboux provides us with a useful characterization of Riemann integrability. Instead of stating an
integrability condition based on a generalized kind of limit, Darboux’s condition is stated in terms of supremums
and infimums.

Notation: Let a,b € R with a < b. Suppose that f : [a,b] — R is a bounded function. Given a partition
P ={xg,...,xn} of [a,b] e, a =20 <21 <--- <2 =), let Az; = x;—x;_; (i.e., the width of the i*'-subinterval).
|IP|| = max{Az1,...,Az,} is the norm (or mesh size) of the partition. A sampling for P is a set S = {s1,...,8,}

n
where for each i, s; € [x;_1, ;). Finally, RS(f,P,S) = > f(s;)Ax; is the Riemann sum of f relative to the partition

i=1

P and sampling S.
Definition: Let P = {zo,...,2,} be a partition with m; = inf  f(z)and M; = sup f(z) (these numbers

TE[w;—1,2i] z€[zi—1,24)

exist because f is bounded). We define. ..
Upper Darboux Sum: U(f,P) = Z M;Ax; Lower Darboux Sum: L(f,P Z m;Ax;

Let S be some sampling relative to P. Then m; < f(s;) < M; (by definition of infimum and supremum), so
L(f,P) <RS(f,P,S) <U(f,P).
Lemma: Given a partition P, for every € > 0 there exists a sampling S; such that U(f,P) — RS(f,P,S1) < € and
a sampling Ss such that RS(f, P,Sz) — L(f,P) < ¢
proof: Counsider ¢/(nAxz;) > 0. There exists some s; € [x;—1,x;] such that M; — f(s;) < €/(nAx;) because
M;= sup f(x). This gives us our sampling S; = {s1,..., 5, }.

T€[Ti—1,T4] n n
€ €
U(f,P) —RS(f,P,81) = ZMA@ Zf (si)Az; = ;( — fsi)Az; < Z}m“i = ;5 =e
The proof for the lower sum is similar. l

Definition: -
Upper Darboux Integral: / f=U(f) =inf{U(f,P | P is a partition}
a

b
Lower Darboux Integral: / f=L(f) =sup{L(f,P | P is a partition}

Notice that the set of upper sums is bounded below by lower sums and vice-versa. Therefore, these upper and
lower integrals always exist. We can think of U(f,P) as an overestimate of the integral of f and L(f,P) as an
underestimate. So more-or-less, this makes U(f) the lowest of all of the overestimates and L(f) the highest of all
the underestimates.

Definition: Adding more points to a partition yields a refinement. In particular, if P and P’ are partitions such
that P C P/, we say that P’ is a refinement of P.

Notice that if P; and P, are partitions, then Py U Ps is a common refinement of both P; and Ps. Also, it should
be obvious that if M = sup f(x) and M; = sup f(z), then M = max{Mj,..., M,}. This means that

x€[20,2m] r€[2i-1,%i)

M(zp — 20) = >, MAz; > > M;Az;. A similar statement follows for infimums. Thus we have that. . .
i=1 i=1

Lemma: Given a refinement of partitions P C P’, we have. ..
L(f,P) < L(f,P") <U(f,P") <U(f.P)
In particular, given any two partitions, P; and Po, we have. ..
L(f,Pr) < L(f, PLUP2) SU(f,PLUPy) <U(f, Pa)

Therefore, every lower sum is a lower bound for all upper sums and every upper sum is an upper bound for all lower
sums. This then implies that L(f,P1) < U(f) and L(f) < U(f,P2) (by the definitions of infimum and supremum).
Thus U(f) is an upper bound for all lower sums and L(f) is a lower bound for all upper sums. Thus because L(f)
and U(f) are greatest lower and least upper bounds, so for all partitions P; and Ps. ..

Next, we a technical lemma. Its proof doesn’t use anything fancy, it’s just takes some effort to write down.



Lemma: Given a partition P’ and € > 0, there is some ¢ > 0 such that for every partition P with ||P|| < § we have
U(f,P)—U(f,PUP’) < e. Similarly there is some 6 > 0 such that for every partition P with ||P|| < ¢ we have
L(f,PUP’) — L(f,P) < e. Putting these facts together (pick the minimum of two §’s), there is some § > 0 such
that for every partition P with ||P|| < § we have both U(f,P) —U(f,PUP’) <eand L(f,PUP’')—L(f,P) <e

proof: Let M € R such that |f(z)| < M for all 2 € [a,b] (M exists because we assumed that f is bounded on [a, b]).
Let P’ = {xg,...,Zn}. Suppose € > 0 and let § = min{e/(2nM), Axy, ..., Az, }.

Consider any partition P = {yo,...,ym} such that |P|| < 6. We want to analyze P UP" = {z9,...,2¢}. Now
IP|| <0 < min{Axy,...,Ax,} says that the largest gap between two y;’s is smaller than the smallest gap between
two zy’s. This means that in PUP’ every zj, € P’ (other than z¢ and z,) is surrounded by y;’s from P. In particular,
our partition looks like:

a=20=Yo <Y1 < - <Yi, LT <Yir+1 < -+ Yip LX< Yigg1 <+ <Y =Tp =0
Let’s consider each subinterval [z;_1, 2;].

Case 1: Suppose we move between y,’s. That is, suppose [2;_1, 2;] = [Yk—1, yx| for some k. Then. ..
sup  f(z)Az; = sup  flz)Ayx
w€[zj-1,%4] TE[Yk—1,Yk]

So the corresponding terms in the summations U(f, P) and U(f, P UP’) cancel out.
Case 2: Suppose we jump over an xj. That is, zj_1 = y;, < Tk = 2j < Yip41 = Zj41.

Let M = sup  f(z)=  sup f(x), M'= sup f(z)= sup f(z),andM" = sup f(z)=

€[Yiy, Yij+1] z€[zj—1,2j+1] z€[yi, ] x€[zj-1,24] €Tk Yy +1]

sup  f(x). Then the (ix +1)-st term in U(f, P) is M Ay;, 41 = M (Azj + Azjyq) = M Azj + M"" Az and
T€[z5,2541]
the j-th and (j+1)-st terms in U(f, PUP’) are M'Az; and M"Az;;. Now since M' and M" are bounded above by
M"" and the function itself is bounded by M, we have M"'—M’ < M and M"'—M" < M. Thus the difference between
the (i +1)-st term in U(f, P) and the j-th and (j+1)-st terms in U(f,PUP")is (M""—M")Azj+(M"" —M")Azj11 <

MAzj + MAz .y < 2M||PUP|| < 2M|[P|| < 2M6 < 2M7M - 5,
So in the difference of upper sums, each case 1 occurrence contrlbutes a 0 and each case 2 occurrence contributes

at most €/n. But case 2 can only occur (at most) n-times (each occurrence must involve some new xy). Thus
€
U(f,P)=U(f,PUP) < - n=c
The proof for lower sums is analogous. W

br=J"F.

Theorem: Let f : [a,b] — R be a bounded function. Then f is Riemann integrable on [a, b] if and only if [
Moreover, in such a case, f;f = f;f = fab f.

proof: Let I = f;f =L(f)and I = f;f =U(f).

Suppose f be Riemann integrable on [a,b] and let I = f; f. Suppose € > 0. There exists some partition
P’ such that U(f,P’) — I < ¢/3 since I is a supremum. f is Riemann integrable so there exists some § > 0
such that ||P|| < ¢ implies |[RS(f,P,S) — I| < €/3. Let P O P’ be a refinement such that |P”|| < & (such
refinements always exist — just union P’ with a suitable standard partition). Thus [RS(f,P",S") — I| < ¢/3. We
have I <U(f,P") < U(f,P’) so that U(f,P")—1 < €/3. A previous lemma guarantees that there is some sampling
8" such that U(f,P") — RS(f,P",S") < ¢/3. Therefore,

I —1I| = |I-RS(f,P",8")+RS(f,P",8")-U(f,P")+U(f,P") 1|
< |[I-RS(£,P".8")|+[RS(f,P",8") ~U(f P+ [U(fP") ~T| < g+ 5+ 5 =¢
This holds for all € > 0. Therefore, I = I. Similarly, I = I so that [ =1 = I.

Now suppose that I = I. Call this number I = I = I. Let € > 0. Because the lower and upper sums are defined
as a supremum and infimum, there are partitions P; and Ps such that U(f,P1) < I +¢/2 and L(f,Pa) > I — ¢/2.
Let P/ =Py UPs. Then I —€/2 < L(f,P2) < L(f,P") <U(f,P") <U(f,P1) < I+¢€/2.

Let § > 0 be the quantity given in our previous technical lemma such that for all partitions P with ||P| < § we
have that both U(f,P) —U(f,PUP’) <e/2 and L(f,PUP') — L(f,P) < ¢/2.

So let P be a partition with ||P|| < ¢ and let S be a sampling. Then

RS(f,P,S) < U(f,P) <U(f,PUP’)+%§U(f,P’)+§ <I+§+§:I+e

Likewise, I — e < RS(f, P, S) so that I —e < RS(f,P,S) < I + e. We have shown that for every e > 0 there is
some ¢ > 0 such that for all partitions P with ||P|| < § and samplings S, we have |RS(f,P,S) — I| < e. Therefore,

f is Riemann integrable with f: f=I=I=11



