
Math 3220 Darboux Integration March 2019

Jean Gaston Darboux provides us with a useful characterization of Riemann integrability. Instead of stating an
integrability condition based on a generalized kind of limit, Darboux’s condition is stated in terms of supremums
and infimums.

Notation: Let a, b ∈ R with a < b. Suppose that f : [a, b] → R is a bounded function. Given a partition
P = {x0, . . . , xn} of [a, b] (i.e., a = x0 < x1 < · · · < xn = b), let ∆xi = xi−xi−1 (i.e., the width of the ith-subinterval).
‖P‖ = max{∆x1, . . . ,∆xn} is the norm (or mesh size) of the partition. A sampling for P is a set S = {s1, . . . , sn}
where for each i, si ∈ [xi−1, xi]. Finally, RS(f,P,S) =

n∑
i=1

f(si)∆xi is the Riemann sum of f relative to the partition

P and sampling S.

Definition: Let P = {x0, . . . , xn} be a partition with mi = inf
x∈[xi−1,xi]

f(x) and Mi = sup
x∈[xi−1,xi]

f(x) (these numbers

exist because f is bounded). We define. . .

Upper Darboux Sum: U(f,P) =

n∑
i=1

Mi∆xi Lower Darboux Sum: L(f,P) =

n∑
i=1

mi∆xi

Let S be some sampling relative to P. Then mi ≤ f(si) ≤ Mi (by definition of infimum and supremum), so
L(f,P) ≤ RS(f,P,S) ≤ U(f,P).

Lemma: Given a partition P, for every ε > 0 there exists a sampling S1 such that U(f,P)− RS(f,P,S1) < ε and
a sampling S2 such that RS(f,P,S2)− L(f,P) < ε.
proof: Consider ε/(n∆xi) > 0. There exists some si ∈ [xi−1, xi] such that Mi − f(si) < ε/(n∆xi) because
Mi = sup

x∈[xi−1,xi]

f(x). This gives us our sampling S1 = {s1, . . . , sn}.

U(f,P)− RS(f,P,S1) =

n∑
i=1

Mi∆xi −
n∑

i=1

f(si)∆xi =

n∑
i=1

(Mi − f(si))∆xi <

n∑
i=1

ε

n∆xi
∆xi =

n∑
i=1

ε

n
= ε

The proof for the lower sum is similar. �

Definition:

Upper Darboux Integral:

∫ b

a

f = U(f) = inf{U(f,P | P is a partition}

Lower Darboux Integral:

∫ b

a

f = L(f) = sup{L(f,P | P is a partition}

Notice that the set of upper sums is bounded below by lower sums and vice-versa. Therefore, these upper and
lower integrals always exist. We can think of U(f,P) as an overestimate of the integral of f and L(f,P) as an
underestimate. So more-or-less, this makes U(f) the lowest of all of the overestimates and L(f) the highest of all
the underestimates.

Definition: Adding more points to a partition yields a refinement. In particular, if P and P ′ are partitions such
that P ⊆ P ′, we say that P ′ is a refinement of P.

Notice that if P1 and P2 are partitions, then P1 ∪P2 is a common refinement of both P1 and P2. Also, it should
be obvious that if M = sup

x∈[z0,zm]

f(x) and Mi = sup
x∈[zi−1,zi]

f(x), then M = max{M1, . . . ,Mn}. This means that

M(zn − z0) =
n∑

i=1

M∆zi ≥
n∑

i=1

Mi∆zi. A similar statement follows for infimums. Thus we have that. . .

Lemma: Given a refinement of partitions P ⊆ P ′, we have. . .

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P)

In particular, given any two partitions, P1 and P2, we have. . .

L(f,P1) ≤ L(f,P1 ∪ P2) ≤ U(f,P1 ∪ P2) ≤ U(f,P2)

Therefore, every lower sum is a lower bound for all upper sums and every upper sum is an upper bound for all lower
sums. This then implies that L(f,P1) ≤ U(f) and L(f) ≤ U(f,P2) (by the definitions of infimum and supremum).
Thus U(f) is an upper bound for all lower sums and L(f) is a lower bound for all upper sums. Thus because L(f)
and U(f) are greatest lower and least upper bounds, so for all partitions P1 and P2. . .

L(f,P1) ≤ L(f) ≤ U(f) ≤ U(f,P2)

Next, we a technical lemma. Its proof doesn’t use anything fancy, it’s just takes some effort to write down.
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Lemma: Given a partition P ′ and ε > 0, there is some δ > 0 such that for every partition P with ‖P‖ < δ we have
U(f,P) − U(f,P ∪ P ′) < ε. Similarly there is some δ > 0 such that for every partition P with ‖P‖ < δ we have
L(f,P ∪ P ′) − L(f,P) < ε. Putting these facts together (pick the minimum of two δ’s), there is some δ > 0 such
that for every partition P with ‖P‖ < δ we have both U(f,P)− U(f,P ∪ P ′) < ε and L(f,P ∪ P ′)− L(f,P) < ε.

proof: Let M ∈ R such that |f(x)| < M for all x ∈ [a, b] (M exists because we assumed that f is bounded on [a, b]).
Let P ′ = {x0, . . . , xn}. Suppose ε > 0 and let δ = min{ε/(2nM),∆x1, . . . ,∆xn}.

Consider any partition P = {y0, . . . , ym} such that ‖P‖ < δ. We want to analyze P ∪ P ′ = {z0, . . . , z`}. Now
‖P‖ < δ ≤ min{∆x1, . . . ,∆xn} says that the largest gap between two yj ’s is smaller than the smallest gap between
two xk’s. This means that in P∪P ′ every xk ∈ P ′ (other than x0 and xn) is surrounded by yj ’s from P. In particular,
our partition looks like:

a = x0 = y0 < y1 < · · · < yi1 ≤ x1 < yi1+1 < . . . yi2 ≤ x2 < yi2+1 < · · · < ym = xn = b
Let’s consider each subinterval [zj−1, zj ].

Case 1: Suppose we move between yk’s. That is, suppose [zj−1, zj ] = [yk−1, yk] for some k. Then. . .

sup
x∈[zj−1,zj ]

f(x)∆zj = sup
x∈[yk−1,yk]

f(x)∆yk

So the corresponding terms in the summations U(f,P) and U(f,P ∪ P ′) cancel out.
Case 2: Suppose we jump over an xk. That is, zj−1 = yik < xk = zj < yik+1 = zj+1.

LetM ′′′ = sup
x∈[yik

,yik+1]

f(x) = sup
x∈[zj−1,zj+1]

f(x), M ′ = sup
x∈[yik

,xk]

f(x) = sup
x∈[zj−1,zj ]

f(x), andM ′′ = sup
x∈[xk,yik+1]

f(x) =

sup
x∈[zj ,zj+1]

f(x). Then the (ik + 1)-st term in U(f,P) is M ′′′∆yik+1 = M ′′′(∆zj + ∆zj+1) = M ′′′∆zj +M ′′′∆zj+1 and

the j-th and (j+1)-st terms in U(f,P∪P ′) are M ′∆zj and M ′′∆zj+1. Now since M ′ and M ′′ are bounded above by
M ′′′ and the function itself is bounded byM , we haveM ′′′−M ′ < M andM ′′′−M ′′ < M . Thus the difference between
the (ik+1)-st term in U(f,P) and the j-th and (j+1)-st terms in U(f,P∪P ′) is (M ′′′−M ′)∆zj+(M ′′′−M ′′)∆zj+1 <

M∆zj +M∆zj+1 < 2M‖P ∪ P ′‖ ≤ 2M‖P‖ < 2Mδ ≤ 2M
ε

2nM
=
ε

n
.

So in the difference of upper sums, each case 1 occurrence contributes a 0 and each case 2 occurrence contributes
at most ε/n. But case 2 can only occur (at most) n-times (each occurrence must involve some new xk). Thus

U(f,P)− U(f,P ∪ P ′) < ε

n
· n = ε.

The proof for lower sums is analogous. �

Theorem: Let f : [a, b]→ R be a bounded function. Then f is Riemann integrable on [a, b] if and only if
∫ b

a
f =

∫ b

a
f .

Moreover, in such a case,
∫ b

a
f =

∫ b

a
f =

∫ b

a
f .

proof: Let I =
∫ b

a
f = L(f) and I =

∫ b

a
f = U(f).

Suppose f be Riemann integrable on [a, b] and let I =
∫ b

a
f . Suppose ε > 0. There exists some partition

P ′ such that U(f,P ′) − I < ε/3 since I is a supremum. f is Riemann integrable so there exists some δ > 0
such that ‖P‖ < δ implies |RS(f,P,S) − I| < ε/3. Let P ′′ ⊇ P ′ be a refinement such that ‖P ′′‖ < δ (such
refinements always exist – just union P ′ with a suitable standard partition). Thus |RS(f,P ′′,S ′′) − I| < ε/3. We
have I ≤ U(f,P ′′) ≤ U(f,P ′) so that U(f,P ′′)− I < ε/3. A previous lemma guarantees that there is some sampling
S ′′ such that U(f,P ′′)− RS(f,P ′′,S ′′) < ε/3. Therefore,

|I − I| = |I − RS(f,P ′′,S ′′) + RS(f,P ′′,S ′′)− U(f,P ′′) + U(f,P ′′)− I|
≤ |I − RS(f,P ′′,S ′′)|+ |RS(f,P ′′,S ′′)− U(f,P ′′)|+ |U(f,P ′′)− I| < ε

3
+
ε

3
+
ε

3
= ε

This holds for all ε > 0. Therefore, I = I. Similarly, I = I so that I = I = I.

Now suppose that I = I. Call this number I = I = I. Let ε > 0. Because the lower and upper sums are defined
as a supremum and infimum, there are partitions P1 and P2 such that U(f,P1) < I + ε/2 and L(f,P2) > I − ε/2.
Let P ′ = P1 ∪ P2. Then I − ε/2 < L(f,P2) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P1) < I + ε/2.

Let δ > 0 be the quantity given in our previous technical lemma such that for all partitions P with ‖P‖ < δ we
have that both U(f,P)− U(f,P ∪ P ′) < ε/2 and L(f,P ∪ P ′)− L(f,P) < ε/2.

So let P be a partition with ‖P‖ < δ and let S be a sampling. Then

RS(f,P,S) ≤ U(f,P) < U(f,P ∪ P ′) +
ε

2
≤ U(f,P ′) +

ε

2
< I +

ε

2
+
ε

2
= I + ε

Likewise, I − ε < RS(f,P,S) so that I − ε < RS(f,P,S) < I + ε. We have shown that for every ε > 0 there is
some δ > 0 such that for all partitions P with ‖P‖ < δ and samplings S, we have |RS(f,P,S)− I| < ε. Therefore,

f is Riemann integrable with
∫ b

a
f = I = I = I. �
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