
Math 3220 {(−1)n}∞n=1 and {sin(n)}∞n=1 Diverge Intro. to Real Analysis

Definition: The sequence {an}∞n=1 converges to the real number L iff for every ε > 0 there exists some N > 0
such that for all n > N we have that |an − L| < ε. We write lim

n→∞
an = L or an → L and call L the limit1 of the

sequence. If a sequence does not converge to any real number, we say it diverges.

Considering the above definition, if we are to prove that a sequence diverges, we must show the L is not a limit
no matter what L is. Recall that negating a logical statement flips quantifiers from ∀ to ∃ and vice-versa. Thus
we must show that for every L ∈ R there is some ε > 0 such that for every N > 0 there is some n > N such that
|an − L| ≥ ε.

Example: {(−1)n}∞n=1 diverges.

Proof: We will use proof by contradiction. Let L ∈ R and suppose (−1)n → L.
Before getting too much further, we will need the “ceiling” function: dNe. This is the closest integer k = dNe

such that k ≥ N . For example, d3.2e = dπe = 4 and d4.999e = d5e = 5.
Consider ε = 1/2 > 0. Since (−1)n → L there exists some N > 0 such that |(−1)n − L| < ε = 1/2 for

every n > N . Notice that both 2dNe and 2dNe + 1 are greater than N . Thus |(−1)2dNe − L| = |1 − L| < 1/2.
This implies that 1/2 = 1 − 1/2 < L < 1 + 1/2 = 3/2. Likewise, |(−1)2dNe+1 − L| = | − 1 − L| < 1/2 so that
−3/2 = −1 − 1/2 < L < −1 + 1/2 = −1/2. This implies that L is both positive and negative (contradiction).
Therefore, no such limit exists. We have that {(−1)n}∞n=1 diverges. �

This argument can be modified to show that {sin(n)}∞n=1 diverges. The idea is that we if we go down the sequence
far enough, we can hit values above 1/2 and below −1/2. So the same argument (with a little finesse) will work.

Example: {sin(n)}∞n=1 diverges.

Proof: We will use proof by contradiction. Let L ∈ R and suppose sin(n)→ L.
Let ε = 0.25 > 0. There exists some N > 0 such that

| sin(n)− L| < 0.25 for all n > N.

Now let’s pick out values for n such that n ≥ N and n is as close to π/2 + 2πk and 3π/2 + 2πk (k ∈ Z) as possible
(this is where sin takes on values 1 and −1 respectively). Consider

N1 = dπ/2 + 2πdNee ≥ π/2 + 2πN > N and N2 = d3π/2 + 2πdNee ≥ 3π/2 + 2πN > N

again where dxe is the ceiling function. Notice that for any x ∈ R, dxe = x+ ` for some 0 ≤ ` < 1. In particular, let
N1 = π/2 + 2πdNe+ `1 and N2 = 3π/2 + 2πdNe+ `2 where 0 ≤ `1, `2 < 1.

Now sin(n) decreases on the interval [π/2+2πdNe, 3π/2+2πdNe] and increases on the interval [3π/2+2πdNe, 5π/2+
2πdNe]. Thus

sin(N1) = sin(π/2 + 2πdNe+ `1) > sin(π/2 + 2πdNe+ 1) = sin(π/2 + 1) ≈ 0.54 > 0.5

and
sin(N2) = sin(3π/2 + 2πdNe+ `2) < sin(3π/2 + 2πdNe+ 1) = sin(3π/2 + 1) ≈ −0.54 < −0.5

Finally, recalling N1, N2 > N and that | sin(n)− L| < 0.25 for all n > N , we have that

| sin(N1)− L| < 0.25 and | sin(N2)− L| < 0.25

Suppose that L ≥ 0. This means that | sin(N2) − L| = −(sin(N2) − L) = L − sin(N2) > L + 0.5 ≥ 0.5 since
sin(N2) < −0.5. But this is impossible since | sin(N2) − L| < 0.25. Therefore, it cannot be the case that L ≥ 0.
Thus we must have that L < 0. This means that −L > 0 and so | sin(N1)− L| = sin(N1)− L > 0.5− L > 0.5 since
sin(N1) > 0.5. But this cannot be since | sin(N1)− L| < 0.25. Therefore, L < 0 is impossible as well. Thus L must
not exist. In other words, the sequence diverges. �

1 Theorem: If a sequence converges, its limit is unique.Thus we are justified saying “the” limit not just “a” limit.


