Math 3220 Rationals and Irrationals are Densely Packed Intro. to Real Analysis

Theorem: Let $a, b \in \mathbb{R}$ such that a < b. There exists both a rational number r and an irrational number s such that a < r < b and a < s < b. Moreover, there are infinitely many rational and irrational numbers between a and b.

Proof: First, we will prove the existence of our rational number r. To do this we consider three cases: $a \ge 0$, $a < 0 \le b$, and finally a < b < 0.

- Suppose $a \ge 0$. We have that a < b so that 0 < b a. By the squeezing in lemma, there exists some positive integer n (i.e., $n \in \mathbb{N}$) such that $0 < \frac{1}{n} < b a$.
 - Let $M = \{k \in \mathbb{N} \mid k/n > a\}$. If a < 1/n, then $1 \in M$. Otherwise, 0 < 1/n < a (Note: here we have used our assumption that $a \ge 0$) and the Archimedean principle states that there is some positive integer n' such that n'/n > a so that $n' \in M$. Either way, we have that M is not empty. Now M is a non-empty set of positive integers. The Well-Ordering Principle states that M must have a least element. Let $m = \min(M)$ be this least element of M.

Therefore, $\frac{m}{n} > a$ but $\frac{m-1}{n} \le a$. Clearing denominators, we have $m-1 \le an$ so that $m \le an+1$. Therefore, $\frac{m}{n} \le a + \frac{1}{n} < a + (b-a) = b$ (since 1/n < b-a). Therefore, we have established that a < r < b where $r = \frac{m}{n} \in \mathbb{Q}$.

- Now consider that case when $a < 0 \le b$. We have 0 < -a so by the squeezing in lemma there is a positive integer n such that $0 < -\frac{1}{n} < a$. Therefore, $a < \frac{1}{n} < 0 \le b$. Thus $r = -\frac{1}{n}$ is our desired rational number.
- Finally, consider when a < b < 0. Then 0 < -b < -a. So by our first case we have some $r' \in \mathbb{Q}$ such that -b < r' < -a. Therefore, a < r < b where $r = -r' \in \mathbb{Q}$.

Once we can squeeze in rational numbers, irrationals follow easily. First, suppose that we have two rational numbers: $\frac{u}{v}$ and $\frac{w}{v}$ (where u, v, w, and x are all integers and of course $v \neq 0$ and $x \neq 0$). Assume that $\frac{u}{v} < \frac{w}{x}$. Thus we have $\frac{ux}{vx} = \frac{u}{v} < \frac{w}{x} = \frac{vw}{vx}$ so that ux < vw (because these are integers we have: $ux < ux + 1 \leq vw$).

Notice that $1 < \sqrt{2} < 2$ (since squaring gives 1 < 2 < 4). So $0 < \sqrt{2} - 1 < 1$. Thus $ux < ux + (\sqrt{2} - 1) < ux + 1 \le vw$. Therefore, $\frac{u}{v} = \frac{ux}{vx} < \frac{ux - 1 + \sqrt{2}}{vx} < \frac{ux + 1}{vx} \le \frac{vw}{vx} = \frac{w}{x}$. We observe that $p = \frac{ux - 1 + \sqrt{2}}{vx}$ is irrational. Therefore, between any two rational numbers there is an irrational number. Now consider a < b. We can

Therefore, between any two rational numbers there is an irrational number. Now consider a < b. We can squeeze in a rational number r_1 such that $a < r_1 < b$. Now squeeze a rational number in between r_1 and b and get $a < r_1 < r_2 < b$. Now squeeze an irrational number between those rational numbers and get $a < r_1 < p < r_2 < b$. Thus an irrational number, p, can be squeezed between any two real numbers.

We can continue such a process squeezing in rational and irrational numbers and get and endless list: $a < r_1 < p_1 < r_2 < p_2 < \cdots < b$. Thus there are an infinite number of irrational and rational numbers between any two real numbers.