#1 Comparing Notes Use the comparison test to prove convergence or divergence of the following series.

Note: Use Theorem 2.26 page 127. This is the standard comparison test. Don't use a limit comparison or any other test. Carefully check that all test hypotheses are fulfilled!

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k+2^k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k}{2k^2 - 1}$$

#2 A Series of Questions State whether the following series either converge absolutely, converge conditionally, or diverge. Use test(s) to prove your assertion. Carefully check that all test hypotheses are fulfilled!

(a)
$$\sum_{k=1}^{\infty} \sin(k)$$

(b)
$$\sum_{k=1}^{\infty} \frac{1 + \sin^2(k)}{\sqrt{k}}$$

(c)
$$\sum_{k=1}^{\infty} \frac{(-k)^3}{k!}$$

(d)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[3]{k}}$$

#3 Summing Up Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be convergent series.

(a) Prove that
$$\sum_{k=1}^{\infty} (a_k + b_k)$$
 converges to $\sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$.

(b) Suppose that $\sum_{k=1}^{\infty} c_k$ diverges. Can we conclude that $\sum_{k=1}^{\infty} (a_k + c_k)$ diverges as well? Prove this or give a counter-example.

RESUBMIT Type up Homework #3 Problem #1 and its solution in LaTeX.