#1 Defining Terms State the definition of $\lim_{x\to a^+} f(x) = -\infty$.

Adapt one of the "variant limit definitions" given in class. Make sure you include an appropriate assumption about the domain of f.

#2 Take it to the Limit Use the ϵ - δ definition of the limit (or one-sided limit) to prove the following:

(a)
$$\lim_{x \to 2} x^2 = 4$$

(b)
$$\lim_{x \to 1^-} \sqrt{1-x} = 0$$

#3 One More Time Let $f(x) = \begin{cases} 3x+1 & x \geq 1 \\ 2 & x < 1 \end{cases}$

Obviously, $\lim_{x\to 1} f(x)$ does not exist.

- (a) Use (the negation of) the ϵ - δ definition of the limit to show that this limit does not exist.
- (b) Give a quick argument that this limit does not exist using left and right handed limits.
- #4 Squeezing In Another Limit Let f, g, and h be defined on $I \{a\}$ where I is an open interval containing a. In addition, suppose that $f(x) \leq g(x) \leq h(x)$ for all $x \in I \{a\}$. Finally, assume that $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$. Prove that $\lim_{x \to a} g(x) = L$.

Prove this using Lemma 3.2 (i.e., use the squeeze theorem for sequences to get this squeeze theorem).

- #5 Linear Things are Continuous Let $A, B \in \mathbb{R}$ and define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = Ax + B. Prove that f is continuous (everywhere). Do this using the ϵ - δ definition of continuity.
- #6 Continuity Continued Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that f(r) = 0 for all $r \in \mathbb{Q}$ (f is zero on all of the rational numbers). Show that f(x) = 0 for all $x \in \mathbb{R}$.

RESUBMIT Type up Homework #4 Problem #3 and its solution in LATEX.