Due: Fri., Apr. 12th, 2019

#1 Rolle's Rolle's Let f be twice differentiable on (a,b) and suppose that both f and f' are continuous on [a,b]. Suppose that a < c < b and that f(a) = f(c) = f(b). Prove that there exists some point in $a < x_0 < b$ such that $f''(x_0) = 0$.

Hint: What does f(a) = f(b) say about f'?

- #2 Contractions If we have a function $f: \mathbb{R} \to \mathbb{R}$ such that $|f(x) f(y)| \le |x y|$ for all $x, y \in \mathbb{R}$, then we say that f is a contraction.
 - (a) Let f be a contraction. Show that f is uniformly continuous.
 - (b) Suppose that f is differentiable everywhere and that $|f'(x)| \leq 1$ for all $x \in \mathbb{R}$. Show that f is a contraction. Suggestion: MVT.
- #3 Bounded and Uniform Let $\{f_n\}$ be a sequence of functions defined on I and suppose that $\{f_n\}$ converges uniformly to f on I. In addition, assume that for each $n \in \mathbb{N}$, we have that f_n is bounded on I. Show that f must be bounded on I.
- #4 Composition [EXTRA CREDIT] Let $\{f_n\}$ be a sequence of *continuous* functions on some interval I and suppose that $\{f_n\}$ converges uniformly to f on I. Show that given some sequence $\{x_n\} \subseteq I$ such that $x_n \to x \in I$ we have that the sequence $\{f_n(x_n)\}$ converges to f(x).

RESUBMIT Type up Homework #6 Problem #4 and its solution in LATEX.