Homework #8

Due: Mon., Apr. 29th, 2019

- **#1 Riemann Sums** It might be helpful to know that: $\sum_{k=1}^{n} 1 = n$, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$, or $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
 - (a) Consider $I = \int_{-1}^{2} x^{2} dx$. Find the regular partition of [-1, 2] into n = 6 subintervals. Compute Riemann sums using (i) left, (ii), right, and (iii) midpoint sample points.
 - (b) Briefly explain why $f(x) = x^2$ is integrable on [-1,2]. Find a general formula for a right hand (Riemann) sum approximation of $I = \int_{-1}^{2} x^2 dx$ when using a regular partition of [-1,2] into n subintervals.
 - (c) Compute your sum from part (b), then use that to compute I. Confirm your result by using the Fundamental Theorem of Calculus.
- #2 Integral Estimating Suppose that f is continuous on [0,2], f(0) = 5, and f'(x) > 0 for all 0 < x < 2. Show that $\int_0^2 f \ge 10$.
- #3 Squeezing Let g be integrable on [a,b] with $\int_a^b g = 0$. Suppose that $0 \le f(x) \le g(x)$ for all $x \in [a,b]$. Show that f is integrable on [a,b] and that $\int_a^b f = 0$.
- #4 Linear Let f and g be integrable on [a,b].

 Use the definition of the Riemann integral to show that f+g is integrable with $\int_a^b (f+g) = \int_a^b f + \int_a^b g dx$.

 RESUBMIT Type up Homework #7 Problem #2 and its solution in LATEX.