
Math 3220 Series Convergence Tests Intro. to Real Analysis

Most all of our series will all sum from k = 1 to ∞. But keep in mind that “k = 1” could be replaced with any

other integer. We typically abbreviate

∞∑
k=1

ak as
∑
ak. We call the sequence {ak}∞k=1 the terms of the series

∞∑
k=1

ak.

Also, if sn = a1 + a2 + · · · + an, then sn is the nthpartial sum of the series
∑
ak. By definition, the series

∑
ak

converges if and only if the corresponding sequence of partial sums {sn} converges. Moreover, when the partial sums
converge, we write

∑
ak = limn→∞ sn. Also, keep in mind that “a finite amount of stuff doesn’t effect convergence”

so that. . .

Lemma: If there is some N > 0 such that ak = bk for all k > N (i.e., ignoring finitely many terms, both series
match), then either both

∑
ak and

∑
bk converge or both diverge.

When just considering convergence (and not what a series sums to), the above lemma gives us permission to
ignore finitely many terms in a series. We need a standard collection of series to compare other series to. Our
standard examples are geometric and p-series.

Theorem: (geometric series) Let r ∈ R. If |r| < 1 ,then

∞∑
k=0

rk =
1

1− r
. If |r| ≥ 1, then

∑
rk diverges.

Theorem: (p-series) Let p ∈ R. If p ≤ 1, then

∞∑
k=1

1

kp
diverges. If p > 1, then

∞∑
k=1

1

kp
converges.

Now on to the tests. . .

Theorem: (nth term test) Suppose
∑
ak converges. Then ak → 0. Therefore, if the sequence {ak} either diverges

or does not converge to 0, then the series
∑
ak diverges.

Theorem: (alternating series test) Suppose that {ak} is a monotone decreasing sequence such that ak → 0.
Then

∑
(−1)kak converges.

If
∑
|ak| converges, we say that

∑
ak converges absolutely. If

∑
ak converges but

∑
|ak| diverges, we say

that
∑
ak converges conditionally.

Theorem: (absolute convergence) Suppose that
∑
ak converges absolutely. Then

∑
ak converges.

Moreover, |
∑
ak| ≤

∑
|ak|.

Theorem: (comparison test) Let 0 ≤ ak ≤ bk. If
∑
bk converges, then

∑
ak converges. Moreover,

∑
ak ≤

∑
bk.

On the other hand, if
∑
ak diverges, then

∑
bk diverges.

Theorem: (bounded comparison test) Let {ak} and {bk} be sequences of positive terms and suppose that
{ak/bk} is bounded above. If

∑
bk converges, then

∑
ak converges. On

the other hand, if
∑
ak diverges, then

∑
bk diverges as well.

Theorem: (limit comparison test) Let {ak} and {bk} be sequences of positive terms and suppose that ak/bk → L.
If
∑
bk converges, then

∑
ak converges. If L 6= 0,

∑
ak converges if and only

if
∑
bk converges.

Theorem: (ratio test) Let {ak} be a sequence of positive terms and suppose that ak+1/ak → L. If L < 1, then∑
ak converges. If L > 1, then

∑
ak diverges. If L = 1, then the test is inconclusive.

For completeness, let’s mention a few other popular convergence tests. You may have seen some of these in
Calculus 2.

Theorem: (integral test) Let f be a decreasing continuous non-negative function. Then
∑∞
k=1 f(k) converges if

and only if the improper integral
∫∞
1
f(x) dx converges.

Theorem: (root test) Let ak ≥ 0 and suppose that k
√
ak → L. If L < 1, then

∑
ak converges. If L > 1, then∑

ak diverges. If L = 1, the test is inconclusive.
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Theorem: (Dirichlet’s test) Let {ak} be a monotone decreasing sequence such that ak → 0. Suppose that there

exists some M ∈ R such that for all N ∈ N we have
∣∣∣∑N

k=1 bk

∣∣∣ ≤ M . Then
∑
akbk

converges.

Theorem: (Abel’s test) Suppose that
∑
ak converges and that {bk} is a monotone and bounded sequence. Then∑

akbk converges.

These last two tests are closely related. In practice, Abel’s test is useful in many nuanced analytic arguments.
Dirichlet’s test subsumes the alternating series test. Notice that

∑
(−1)k has bounded partial sums so if ak is

monotone decreasing to 0, Dirichlet gives us that
∑

(−1)kak converges (i.e., the alternating series test). Dirichlet
also allows us to show convergence for some very tricky oscillating series. For example, suppose that ak is a monotone
decreasing sequence which converges to zero, then we can use Dirichlet’s test to conclude that

∑
sin(k)ak converges.

Notice that most of our tests are for series with either non-negative or positive terms. Because of this, most of
the time we take absolute values of terms and then run a test on our new non-negative series. So generally we are
really checking absolute convergence (instead of plain old convergence). Some of these tests can help when we don’t
have absolute convergence (for example, n-th term test, alternating series test, Dirichlet’s test, and Abel’s test). But
generally conditionally convergent series are difficult to handle.

In some sense conditionally convergent series almost don’t converge. While they have useful and important
applications, conditionally convergent series must be handled with care. Their kind of ill behavior is why we need
analysis!

Let’s finish by quoting Riemann’s results and thus reveal the strangeness of conditionally convergent series.
First, recall that any bijection (i.e., invertible function) from N = {1, 2, 3, . . . } to itself is called a permuation on

N. Let σ : N → N be a permutation on N. Then we call

∞∑
k=1

aσ(k) a rearrangement of

∞∑
k=1

ak. In other words, a

rearrangement of a series is a series with the same terms. But in the rearrangement our terms are being summed
in a different order. While scrambling a finite sum never changes its value (because of commutativity), scrambling
infinite sums can not only change the sum’s value, it can destroy convergence.

Theorem: (Riemann’s rearrangment theorem) If
∑
ak converges absolutely, then every rearrangement of

∑
ak

converges (absolutely) as well. Moreover, every rearrangement converges to the same value. On the other hand,
suppose

∑
ak converges conditionally. Then given any r ∈ R there is a rearrangement σ such that

∑
aσ(k) = r.

Even more, there is a rearrangement σ such that
∑
aσ(k) =∞ and one such that

∑
aσ(k) = −∞. In fact, there is a

rearrangement such that the partial sums
∑
aσ(k) do not approach any value (finite or infinite).

This means that rearranging absolutely convergent series doesn’t change how they behave. On the other hand,
conditionally convergent series can be rearranged to converge to any finite or infinite value or rearranged so they
straight up diverge!
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