Math 3510 leferentlablllty Supplement

For a function of one variable, differentiability is synonymous with the existence of the derivative. However, the notion
of differentiability is much more subtle for functions of more than one variable.

Recall that a function f(z) is differentiable at z = a if f'(a) = }llirr%) w
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little. First, set x = a + h, then h = x — a. Now h — 0 becomes x — a. This means that being differentiable at z = a is

exists. Let’s recast this definition is
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f(z) — [linearization of f at z = a]

This means that f(x) is differentiable at z = a if — 0 as ¢ — a. We have recast

x—a
differentiability into a statement about a comparison between f and its linearization. We have arrived at a working definition

of differentiability in general.
Definition: A function is differentiable at a point if it can be well-approzimated by a linearization at that point.

Let’s make the above definition more concrete. Consider a function f : R™ — R™ and a fixed point a = (a1,...,an,)
[actually, we only need f to be defined on an open ball containing a]. Fix notation

f(x) = flz1,...,x0) = (F (21, zn)s ey f™(21, 0 )
so that f7(x) is a scalar valued function on R™ (i.e. f/:R™ — R).
Definition: f(x) is differentiable at x = a if there is some linear map J, : R” — R™ such that. ..
. [ £60) = [£(@) + Jalx — a)]
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Here we have L(x) = f(a) + Ja(x — a) is the linearization of f(x) at x = a and J, is the Jacobian of f(x) at x = a.
Theorem: If f(x) is differentiable at x = a, then the Jacobian at x = a is unique.

Proof: (Sketch) Let J and K both be Jacobians at x = a. Then ||J(x —a) — K(x —a)|| = ||f(x) — [f(a) + K(x — a)] —
(f(x) = [f(@) + J(x —a)])| < [If(x) = [f(a) + K(x —a)l[| + [[f(x) = [f(a) + J(x — a)]||. Thus
. Jx—a) - K(x—a) If () = [f(a) + K(x —a)]| | [If&x) = [f(a) + J(x — )l
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Sketchy part: This means that the norm of the operator J — K is ||J — K|| = 0 and thus J — K =0 so that J =K. W
Often we prefer to represent linear operators as (coordinate) matrices. First, consider projecting onto the i-th output

coordinate: f projects to f'. Say Ja projects to J: (in fact, let’s identify this linear map its coordinate matrix/vector).
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Thus f*(x) = L'(x) = f*(a) + Jie(x — a). In particular, we have that lim S0 =1 H(a) + Ha (x—a)l
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this limit exists along any continuous curve through x = a, we have (approaching along xy = ax, k # j and z; = t),

lim fl(ah...,aj,l,t,aj+1,...,an) — [fl(a) +J;.(O,...,O,t—aj,O,...,O)]
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=0+0=0

= 0. Since

= 0. Denote the j-th entry of the coordinate
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matrix/vector J; by Jj;(a). Then we have tlim filan, s -1t a4, t,a )~ [f'(a) + Ji5(2)(t — a;)]
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algebraic manipulations, we get lim e g=b 5 Tyl n) = fila n)
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with (¢, j)-entries J;;(a) the Jacobian matriz of f(x) based at x = a (this is the coordinate matrix for the operator J,).

= 0. After some

= J;j(a). We call the m x n matrix

Theorem: If f(x) is differentiable at x = a, then its component functions’ partial derivatives exist (at x = a). Moreover,
the (i, j)-entry of the Jacobian matrix of f(x) is Jij(a) = (f*)s,(a) (i.e. the partial derivative of the i-th component function
with respect to the j-th input variable). In particular, the partials of the component functions of f exist (at x = a).



The converse of this theorem does not hold! From Calculus I1I, we know that just because a limit exists along several
lines, does not mean that the full multivariate limit exists. So it should not be surprising to learn that: existence of partials
does not imply differentiability! 1 will forgo giving an actual counterexample. We will soon see why we don’t tend to run
into this problem in practice.

We learn in Calculus I that differentiable functions are always continuous functions. This is still true.

Theorem: [Differentiability implies continuity] Let f(x) be differentiable at x = a. Then f(x) is continuous at x = a.

—L
Proof: Suppose that f(x) is differentiable at x = a. Then lim ||f(|)|<)a|(|X)
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must limit to 0. This means that liLn f(x) = [f(a) + Ja(x — a)]‘ = 0 so that liLn f(x) — f(a) = Ja(x —a) = 0. Now
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Ja(x—a) = 0 as x — a because J,(0) = 0 and linear operators are continuous (everywhere). Thus lim f(x)— f(a) = 0 and
X—a

= 0. For this limit to be 0, the numerator

so lim f(x) = f(a) which is means f(x) is continuous at x = a. B
X—a

It should come as no surprise that there are non-differentiable continuous functions (i.e. the converse of this theorem does
not hold). In fact, we knew this in Calculus I. It is easy to come up with continuous functions which have “sharp corners”
where they cannot be differentiated. A two variable example would be something like f(z,y) = |x — y|. This function isn’t
differentiable at any point where x = y (the graph of this function looks like a creased piece of paper with the fold along the
line y = ).

Now for a final theorem which lays differentiability concerns to rest.

Theorem: [Continuous partials implies differentiability] Let the component functions of f(x) have continuous (first) partials
at x = a. Then f(x) is differentiable at x = a.

I will not provide a proof of this theorem. Its proof is more technical than the last two results. Also, just as with the other
theorems, the converse of this theorem does not hold. There are differentiable functions which have discontinuous partials.
Again, I will forgo giving a concrete counterexample — such an example is tricky to cook up. Every function we typically
run into has continuous partials (where they are defined). This means that for us, computing partials (and calling on this
theorem) will prove differentiability.

Continuous Partials

|

Differentiable
Partials Exist Continuous

The figure above summarizes our main differentiability theorems. Keep in mind that none of the arrows go backwards in
general. Well, unless we have single variable functions, then “partials exist” (meaning the derivative exists) is the same as
“differentiable”. But again, that’s only for functions of one variable.

Note: Most Calculus IIT texts define differentiability as follows: f(xz,y) is differentiable at (z,y) = (a,b) if the partial
derivatives f;(a,b) and fy(a,b) exist as well as locally defined functions €;(z,y) and es(x,y) such that

f(@,y) = f(a,b) + fula,b)(x = a) + fy(a,b)(y — b) + e1(z, y)(z — a) + es(z,y)(y — D)

linearization error terms
and in addition lim € (z,y) =0 and lim  e(z,y) =0.
(wvy)ﬁ(avb) (w,y)—>(a,b)

It turns out that this definition and our definition (in the case of scalar valued functions of two variables) are equivalent.
You can see that this definition says that f(x,y) is differentiable at (z,y) = (a,b) if f(z,y) is equal to its linearization at
(z,y) = (a,b) plus some suitably structured error terms. If the term f(a,b) is brought over to the other side of the defining
equation, we get something like dz = f, do + f, dy + €1 de + e dy so dz = (fy + €1) dx + (fy + €2) dy. In other words, f, and
fy don’t perfectly capture the change in f, but come close (up to some error terms).

It is my opinion that the definition presented in this handout is more conceptually clear. It also has the advantage of
being immediately generalizable to functions from R™ to R™ and even to functions on arbitrary Banach spaces (whatever
those are).



