Homework #1

- Due: Wed., Sept. 5th, 2018
- #1 Jacobians! Consider $f(x,y) = (3y + x^2y + 1, -x + y^2 1, e^{xy^2}).$
 - (a) Find the Jacobian of f.
 - (b) Give the linear approximation of f(x,y) based at (x,y) = (0,-2)
 - (c) Find something that could be called the "second derivative" of f (there are several ways to organize such a beast).
 - (d) Give the quadratic approximation of f(x,y) based at (x,y) = (0,-2).
- #2 The Second Derivative Test: Let $f(x, y, z) = -2x^3 6xy^2 + 6x + z^4 2z^2$. Find and classify the critical points of f using the second derivative test.

Note: There are 12 critical points – sorry. Find them and tell me whether each point is a relative minimum, relative maximum, a saddle point, or if the test does not apply.

Strong Suggestion: Doing this problem by hand is not advised – maybe not even possible. You should use some software. Here are possibly relevant Maple commands or stubs of commands...

```
with(LinearAlgebra):
with(VectorCalculus):
pts := solve({diff(???,?)=0, ... });
H := Hessian(???,[x,y,z]);
for pt in pts do
   Eigenvalues(subs(pt,H));
end do;
```

- #3 There's got to be an easier way: Compute det $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ only using the fact that the determinant is multilinear, alternating/skew, and $\det(I_3) = 1$.
- #4 Forms Basics: Let $\omega = xy \, dx + x^2 z \, dz$, $\nu = xy^2 z \, dx xyz \, dz$, and $\eta = x^3 \, dy \wedge dz + xy \, dz \wedge dx + yz \, dx \wedge dy$. In addition, let $\mathbf{p} = (1, 2, -1)$, $\mathbf{a} = \langle 1, 2, 3 \rangle$, and $\mathbf{b} = \langle -1, 3, 0 \rangle$.

Note: Simplify answers in term of functions and forms: $dx, dy, dz, dy \wedge dz, dz \wedge dx, dx \wedge dy$, and $dx \wedge dy \wedge dz$.

- (a) Evaluate $\omega_{\mathbf{p}}(\mathbf{a})$ and $\eta_{\mathbf{p}}(\mathbf{a}, \mathbf{b})$.
- (b) Compute $\omega \wedge \nu$ and $\omega \wedge \eta$.
- (c) Compute $\eta \wedge \omega$ and $\omega \wedge \nu \wedge \eta$ (this part should be very easy).