- Due: Mon., Sept. 17th, 2018
- #1 Orienting Ourselves: Let C be the circle: $x^2 + z^2 = 1$ and y = 0.
 - (a) Can $\Omega = xz^2 dx + y^3 e^z dy + xyz dz$ be an orientation for C?
 - (b) Give a smooth parameterization for C to show it is a 1-manifold in \mathbb{R}^3 . Make sure you check that all of the various criterion for a smooth parameterization are met.
- #2 Exterior Derivatives: Some quick computations.
 - (a) Let f(x,y) be a smooth function and $\omega = P dx + Q dy$ both defined on \mathbb{R}^2 . Compute df, $d\omega$, and explain why $d^2 = 0$ for forms on \mathbb{R}^2 .
 - (b) Let $\omega = (x^4 + y^5 z^3) dy \wedge dz + xyz dz \wedge dx + (x^2 + y^2 + z^2) dx \wedge dy$. Compute $d\omega$.
- #3 Into the Fourth Dimension! Consider the following "innocent" coordinate transforms...

$$(1) \qquad (2) \qquad (3)$$

$$x = r\cos(\theta) \qquad z = \rho\cos(\varphi) \qquad t = \beta\cos(\alpha)$$

$$y = r\sin(\theta) \qquad r = \rho\sin(\varphi) \qquad \rho = \beta\sin(\alpha)$$

$$z = z \qquad t = t \qquad \theta = \theta$$

$$t = t \qquad \theta = \theta \qquad \varphi = \varphi$$

$$(1) \circ (2) \qquad (1) \circ (2) \circ (3)$$

$$x = \rho\sin(\varphi)\cos(\theta) \qquad x = \beta\sin(\alpha)\sin(\varphi)\cos(\theta)$$

$$y = \rho\sin(\varphi)\sin(\theta) \qquad y = \beta\sin(\alpha)\sin(\varphi)\sin(\theta)$$

$$z = \rho\cos(\varphi) \qquad z = \beta\sin(\alpha)\cos(\varphi)$$

$$t = t \qquad t \qquad \theta = \theta$$

Notice that each transform is converting a pair of variables to a *polar plane*. For transform (1), we have $x^2+y^2=r^2, \ r\geq 0$, and $0\leq \theta\leq 2\pi$ (or any 2π -period). For transform (2), we have $r^2+z^2=\rho^2$ and $\rho\geq 0$. But now $0\leq \varphi\leq \pi$. Why only π and not 2π ? Because $r\geq 0$ so $r=\rho\sin(\varphi)\geq 0$ so we need $0\leq \varphi\leq \pi$ to keep things positive. Finally, for transform (3), $\rho^2+t^2=\beta^2,\ \beta\geq 0$, and $0\leq \alpha\leq \pi$.

Putting things together, $x^2 + y^2 + z^2 + t^2 = r^2 + z^2 + t^2 = \rho^2 + t^2 = \beta^2$. Notice that (1) is a 4D cylindrical coordinate system, (2) is spherical coordinates in leaving the 4-th coordinate (i.e., t) alone, and (3) is a kind of 4D version of spherical coordinates.

The Jacobian determinant of the (1) transform is $J_1 = r$. Likewise, $J_2 = \rho$ and $J_3 = \beta$. Next, $J_{F \circ G} = J_F J_G$ (chain rule + property of determinants), so $J_{1\circ 2} = r\rho = \rho^2 \sin(\varphi)$ and $J_{1\circ 2\circ 3} = r\rho\beta = \rho^2 \sin(\varphi)\beta = \beta^3 \sin^2(\alpha)\sin(\varphi)$.

- (a) Let $B_R = \{(x, y, z, t) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + t^2 \le R^2\}$ (for some fixed R > 0). Find the 4-volume of B_R : $\iiint_{B_R} 1 \, dx \, dy \, dz \, dt.$
- (b) Consider the unit sphere in \mathbb{R}^4 : $S^3 = \{(x, y, z, t) \mid x^2 + y^2 + z^2 + t^2 = 1\}$. Use the 4D spherical coordinates to parameterize S^3 . Compute $\iiint_{S^3} t \, dx \wedge dy \wedge dz$ using your parameterization (i.e., assume that S^3 is oriented consistently with your parameterization).
- #4 Verify Stokes' Theorem: Let $M = \{(x, y, z) \mid x^2 + y^2 + z^2 = 4 \text{ and } z \ge 0\}$ be the 2-manifold with orientation $\Omega = -x \, dy \wedge dz y \, dz \wedge dx z \, dx \wedge dy$.
 - (a) Identify ∂M . Then find the induced orientation on ∂M .
 - (b) Parameterize ∂M . Then check if your parameterization is compatible with the induced orientation found in part (a).
 - (c) Let $\omega = (y^2 + z^2) dx + x^2 dz$. Verify the generalized Stokes' theorem for this ω and M.