- #1 Dual Basis Let $\alpha = \{(1,0,0), (1,-1,0), (2,0,1)\}.$
 - (a) Explain why α is a basis for \mathbb{R}^3 .
 - (b) Find α^* for $(\mathbb{R}^3)^*$ (i.e. find the basis dual to α).

 Note: By "find" I mean give formulas for dual vectors like the formula given for f in part (c).
 - (c) Explain why $f \in (\mathbb{R}^3)^*$ where f(x, y, z) = 3x + 2y + z (what is the definition of a dual vector?). Then write f as a linear combination of α^* elements (i.e. find its α^* -coordinates).
- #2 Dual Proof Let W be a subspace of a vector space V (over a field \mathbb{F}). We say that $f \in V^*$ annihilates W if $f(\mathbf{w}) = 0$ for all $\mathbf{w} \in W$. Let $A(W) = \{f \in V^* \mid f(\mathbf{w}) = 0 \text{ for all } \mathbf{w} \in W\}$ (the collection of all linear functionals which annihilate W). A(W) is called the **annihilator** of W.
 - (a) Prove that A(W) is a subspace of V^* .
 - (b) [Optional:] Suppose that $V = U \oplus W$ for some subspaces U and W. Show that $V^* = A(W) \oplus A(U)$.
 - (c) [Optional:] Let $T: V \to V$ be a linear operator and suppose that $T(W) \subseteq W$ for some subspace W (i.e. W is a T-invariant subspace). Show that $T^t(A(W)) \subseteq A(W)$ (i.e. A(W) is T^t -invariant).
- #3 Notational Issues Recall that according to Einstein's summation convention, the simultaneous appearance of an upper and lower index implies a summation: $a_{imn}{}^{jk}b_{jk}{}^{m\ell} = \sum_{m}\sum_{j}\sum_{k}a_{imn}{}^{jk}b_{jk}{}^{m\ell} = c_{in}{}^{\ell}$.

The Levi-Civita symbol is a close companion of the Kronecker delta. The Levi-Civita symbol on 2 indices is defined by $\epsilon_{11} = \epsilon_{22} = 0$, $\epsilon_{12} = 1$, and $\epsilon_{21} = -1$. On 3 indices the symbol is defined by (for $i, j, k \in \{1, 2, 3\}$)...

$$\epsilon_{ijk} = \begin{cases} +1 & (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \\ -1 & (i, j, k) = (1, 3, 2), (2, 1, 3), (3, 2, 1) \\ 0 & i = j \text{ or } j = k \text{ or } i = k \end{cases}$$

Notice that (1,3,2) can be obtained from (1,2,3) after a single interchange: $2^{\text{nd}} \leftrightarrow 3^{\text{rd}}$. The same is true for (2,1,3) and (3,2,1). In particular, (1,3,2), (2,1,3), and (3,2,1) are all *odd* permutations of (1,2,3) (we get from the identity (1,2,3) to our triple after an odd number of interchanges).

On the other hand, (2,3,1) requires two interchanges. From (1,2,3) we interchange $1^{\text{st}} \leftrightarrow 2^{\text{nd}}$ and get (2,1,3) then interchange $2^{\text{nd}} \leftrightarrow 3^{\text{rd}}$ and get (2,3,1). The same is true for (3,2,1). Finally, (1,2,3) requires no interchanges at all. In particular, (1,2,3), (2,1,3), and (3,2,1) are all *even* permutations of (1,2,3) (we get from the identity to our triple after an even number of interchanges).

More generally, $\epsilon_{i_1 i_2 \dots i_n}$ is defined to be +1 if (i_1, \dots, i_n) is an even permutation of $(1, \dots, n)$. It's -1 for an odd permutation and 0 if $i_k = i_\ell$ for some $k \neq \ell$ (there's a repeated index).

WARNING: We are using Einstein's summation convention in this problem.

- (a) Assuming $a_{ijk}^{\ell m}$ and b_x^{yz} are indexed collections of scalars where $i, j, k, \ell, m, x, y, z \in \{1, 2, ..., n\}$. Identify the appropriate sub/super-scripts on c if $a_{ijk}^{i\ell}b_{\ell}^{jx}=c_{???}^{???}$. What about $a_{ijk}^{\ell j}b_{\ell}^{ki}$?
- (b) Let A be a 2×2 matrix with entries $A_i{}^j$. What does $\epsilon_{ij}A_1{}^iA_2{}^j$ compute? (Write this out explicitly and identify this as a familiar formula: $\epsilon_{ij}A_1{}^iA_2{}^j$ is the ??? of A.)

More generally, for a 3×3 matrix, what does $\epsilon_{ijk} A_1{}^i A_2{}^j A_3{}^k$ compute? Or for an $n \times n$ matrix, what does $\epsilon_{i_1...i_n} A_1{}^{i_1} \cdots A_n{}^{i_n}$ compute? [No proof/calculation necessary. Just identify what these expression compute.]

(c) Let A be an $n \times n$ matrix with entries A_i^j . What does A_i^i compute?