- Due: Wed., Oct. 31st, 2018
- **#1 Connected and Compact** For each of the following sets, decide whether they are connected and/or compact. Briefly explain your answers.
 - (a) $A = [-2, \infty)$
 - (b) B = [-5, 2)
 - (c) $C = \{x \mid 1 \le |x| \le 2\}$
 - (d) $D = \{(x,y) \mid 4 \le (x-1)^2 + (y+2)^2 \le 9 \}$
 - (e) $E = \{(x, y) \mid |x y| \le 1\}$
- #2 Continuity Let $A \subset \mathbb{R}^n$ and $f: A \to \mathbb{R}^m$. Recall that f is continuous at $\mathbf{a} \in A$ if and only if for every $\epsilon > 0$ there is some $\delta > 0$ such that every $\mathbf{a} \in A$ (the domain) and $\|\mathbf{x} \mathbf{a}\| < \delta$ we have $\|f(\mathbf{x}) f(\mathbf{a})\| < \epsilon$.

Let A and B be topological spaces and $g:A\to B$. We say that g is continuous at $a\in A$ if and only if for every open set $V\subseteq B$ with $f(a)\in V$ (i.e., V is an open neighborhood of f(a)), there exists some open set $U\subseteq A$ such that $a\in U$ (i.e., U is an open neighborhood of a) and $f(U)\subseteq V$.

- (a) Briefly explain why g is continuous (in the topology sense) if and only if g is continuous at every $a \in A$ (in the topological sense).
- (b) Show that f is continuous at $\mathbf{a} \in A$ (in the analysis sense) if and only if f is continuous at $\mathbf{a} \in A$ (in the topological sense).
- #3 Inverse Function Theorem The inverse function theorem says that a smooth function f with an invertible Jacobian matrix $Df(\mathbf{a})$ is a diffeomorphism when restricted to a small enough neighborhood of \mathbf{a} . Moreover, the Jacobian of the inverse of this restriction of f is $(Df(\mathbf{a}))^{-1}$ (the inverse of the Jacobian matrix $Df(\mathbf{a})$). In other words, when f's derivative is invertible, f is locally invertible and the derivative of the inverse is the inverse of the derivative.

Prove the following converse: Let $f: U \to V$ be a diffeomorphism (where U and V are open subsets of \mathbb{R}^n) and $\mathbf{a} \in U$. Show that $Df(\mathbf{a})$ is invertible.

Hint: This is really easy. Note that the chain rule says for differentiable functions $D(f \circ g) = Df \circ Dg$.

#4 Linear Stuff Let $f: \mathbb{R}^n \to \mathbb{R}^m$. Recall that f is linear if and only if $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ and $f(c\mathbf{x}) = cf(\mathbf{x})$. It follows from Linear Algebra! that $f(\mathbf{x}) = A\mathbf{x}$ for some $m \times n$ matrix A. In coordinate notation: $f^j(x^1, \dots, x^n) = A_i^j x^i$ (implied summation).

Show that Df = A. This means that $Df(\mathbf{x}) = A\mathbf{x}$. So what is D(Df)?

Hint: This is also very easy. If you're working hard, you're overthinking this one.