Homework #6

Due: Fri., Nov. 9th, 2018

- #1 The Unit Circle is a Manifold Let $M = S^1 = \{(x,y) \in \mathbb{R} \mid x^2 + y^2 = 1\}$ (i.e., the unit circle).
 - (a) Show S^1 is a manifold using Theorem 3.2 (the cheaty/easy way).
 - (b) As we did with the unit sphere, define maps φ_x^{\pm} and φ_y^{\pm} . For example: $\varphi_x^-:\{(x,y)\in S^1\mid y<0\}\to???$ (you figure out the proper open subset of $\mathbb R$) is defined by $\varphi_x^-(x,y)=x$. Show S^1 is a manifold with these maps forming an atlas.
 - Don't forget to explain why $\varphi_x^+, \varphi_x^- \varphi_y^+, \varphi_x^-$ are valid charts. Also, you should carefully write down transition functions (complete with domains/ranges) and explain why they are smooth.
 - (c) Consider $\tau^{-1}:(0,2\pi)\to S^1-\{(1,0)\}$ defined by $\tau^{-1}(\theta)=(\cos(\theta),\sin(\theta))$. Explain why τ is a possible chart. Then show that τ is compatible with your atlas of φ 's defined in part (b).
 - (d) Given an atlas such that the determinants of all of the Jacobian's of transition functions are all always positive, we have an *oriented atlas* for our *oriented manifold*. Find such an oriented atlas for S^1 .
 - (e) Show $f: S^1 \to \mathbb{R}$ defined by $f(x,y) = x^2 + 3xy$ is a smooth function using the atlas structure defined in part (b).
- #2 The Torus is a Manifold We showed that the torus $T = \{(x, y, z) \mid (3 \sqrt{x^2 + y^2})^2 + z^2 = 1\}$ is an embedded submanifold of \mathbb{R}^3 using Theorem 3.2 in class. The calculation was a bit involved. It is much easier to show that the torus $T = \{(x, y, z, t) \mid x^2 + y^2 = 1 \text{ and } z^2 + t^2 = 1\} = S^1 \times S^1$ is a embedded submanifold of \mathbb{R}^4 using Theorem 3.2. Show this.