Consider the following linear transformations:

$$S: P_2 \to \mathcal{M}_{2,2} \quad \text{defined by} \quad S(ct^2 + bt + a) = \begin{bmatrix} a+b & b \\ c & a+c \end{bmatrix}$$
$$T: \mathcal{M}_{2,2} \to \mathbb{R}^2 \quad \text{defined by} \quad T\left(\begin{bmatrix} x & y \\ u & v \end{bmatrix}\right) = (x-y, u-v)$$

Notice that if we compose these maps we get $T \circ S : P_2 \to \mathbb{R}^2$ where

$$(T \circ S)(ct^2 + bt + a) = T(S(ct^2 + bt + a)) = T\left(\begin{bmatrix} a+b & b\\ c & a+c \end{bmatrix}\right)$$

he standard bases:
$$= (a+b-b, c-(a+c)) = (a, -a)$$

Consider t

• $\beta = \{1, t, t^2\}$ for P_2 • $\gamma = \left\{ E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ for M_{2,2} • $\delta = \{e_1 = (1,0), e_2 = (0,1)\}$ for \mathbb{R}^2

Let's find coordinate matrices for S, T, and $T \circ S$.

• $S(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1E_{11} + 0E_{12} + 0E_{21} + 1E_{22} \implies [S(1)]_{\gamma} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ $S(t) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = 1E_{11} + 1E_{12} + 0E_{21} + 0E_{22} \implies [S(1)]_{\gamma} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ $S(t^2) = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = 0E_{11} + 0E_{12} + 1E_{21} + 1E_{22} \implies [S(1)]_{\gamma} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ Therefore, $[S]_{\beta}^{\gamma} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ • $T(E_{11}) = T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) = (1,0) = 1e_1 + 0e_2 \implies [T(E_{11})]_{\delta} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $T(E_{12}) = T\left(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \right) = (-1, 0) = -1e_1 + 0e_2 \qquad \Longrightarrow \qquad [T(E_{12})]_{\delta} = \begin{bmatrix} -1\\ 0 \end{bmatrix}$ $T(E_{21}) = T\left(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\right) = (0, 1) = 0e_1 + 1e_2 \qquad \Longrightarrow \qquad [T(E_{21})]_{\delta} = \begin{bmatrix} 0\\ 1 \end{bmatrix}$ $T(E_{22}) = T\left(\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\right) = (0, -1) = 0e_1 - 1e_2 \qquad \Longrightarrow \qquad [T(E_{22})]_{\delta} = \begin{bmatrix} 0\\ -1 \end{bmatrix}$ Therefore, $[T]_{\gamma}^{\delta} = \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{vmatrix}$

• To find a coordinate matrix for $T \circ S$ we could do a direct computation like before...or we can use our work from the last two bullets: **Γ**1 1 **∩]**

$$[T \circ S]^{\delta}_{\beta} = [T]^{\delta}_{\gamma}[S]^{\gamma}_{\beta} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

[Or by direct computation: $(T \circ S)(1) = (1, -1) = 1e_1 - 1e_2$ and $(T \circ S)(t^2) = (T \circ S)(t) = (T \circ S)(t)$ $(0,0) = 0e_1 + 0e_2$ which gives us the same matrix (of course).]

Let's find a basis for the Kernel and Range of S, T, and $T \circ S$. We know that if X is a linear transformation with corresponding matrix Y then N(Y) is a coordinate representation of $\operatorname{Ker}(X)$ and $\operatorname{Col}(Y)$ is a coordinate representation of $\operatorname{Range}(X)$.

• For S we have... $[S]^{\gamma}_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Thus $N([S]_{\beta}^{\gamma}) = \begin{cases} \begin{bmatrix} 0\\0\\0 \end{bmatrix} \end{cases}$ and so $Ker(S) = \{0\}$ which means S is 1-1 and nullity(S) = 0.

Next, we see that every column of the coordinate matrix is a pivot column so that

 $\left\{ \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix} \right\} \text{ is a basis for } \operatorname{Col}([S]_{\beta}^{\gamma}). \text{ These coordinate vectors correspond to} \right.$

the following set (which is a basis for $\operatorname{Range}(S)$): $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}$ which is a basis for Range(S). Thus rank(S) = 3 (obviously \tilde{S} is not onto)

 $[T]^{\delta}_{\gamma} = \begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & 0 & 1 & -1 \end{bmatrix}$ • For T we have...

Labeling variables x_1, x_2, x_3 , and x_4 , we have the equations: $x_1 - x_2 = 0$ and $x_3 - x_4 = 0$. x_2 and x_4 are free, so let $x_2 = s$ and $x_4 = t$ we get:

$$\begin{array}{rcl}
x_1 &= s \\
x_2 &= s \\
x_3 &= t \\
\text{Thus,} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ is a basis for } N([T]^{\delta}_{\gamma}) \text{ which corresponds to:} \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\} (a)$$

basis for Ker(T)). Therefore, T is not 1-1 and nullity(T) = 2.

Next, the first and third columns of our coordinate matrix are pivot columns so that $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis for $\operatorname{Col}([T]^{\delta}_{\gamma})$. These coordinate vectors correspond to $\{(1,0), (0,1)\}$ (the standard basis for \mathbb{R}^2). Therefore, $\operatorname{Range}(T) = \mathbb{R}^2$ and $\operatorname{rank}(T) = 2$. that $\left\{ \begin{bmatrix} 1\\0\\\end{bmatrix}, \begin{bmatrix} 0\\1\\\end{bmatrix} \right\}$

• Finally, for $T \circ S$ we have... $[T \circ S]^{\delta}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

If we label variables x_1 , x_2 , and x_3 , we see that the matrix says: $x_1 = 0$. Thus x_2 and x_3 are free, say $x_2 = s$ and $x_3 = t$ so we get:

$$\begin{array}{rcl} x_1 &=& 0\\ x_2 &=& s\\ x_3 &=& t \end{array} \quad \text{thus...} \quad \mathbf{x} = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} s + \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} t$$

Therefore, $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is a basis for $N([T \circ S]^{\delta}_{\beta})$. These coordinate vectors correspond to: $[t, t^2]$ which is a basis for $N(T \circ S)^{\delta}_{\beta}$. These coordinate vectors correspond

to: $\{t, t^2\}$ which is a basis for Ker $(T \circ S)$. From this we see that $T \circ S$ is not 1-1 and nullity $(T \circ S) = 2$.

Next, the first column of our coordinate matrix is the only pivot column so that $\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$ is a basis for $\operatorname{Col}([T \circ S]^{\delta}_{\beta})$. This coordinate vector corresponds to $\{(1, -1)\}$ which is a basis for $\operatorname{Range}(T \circ S)$. We see from this that $T \circ S$ is not onto since $\operatorname{rank}(T \circ S) = 1 \ (< 2)$.