Let \mathfrak{g} be a Lie algebra over a field $\mathbb F$ and let V be a $\mathfrak{g}\text{-module}.$

1. (EW page 59 Exercise 7.3) Show that V is irreducible if and only if for any $0 \neq \mathbf{v} \in V$ we have that the submodule generated by v contains all of V.

Note: The submodule generated by \mathbf{v} is the span of all elements of the form:

 $\mathbf{x}_1 \bullet (\mathbf{x}_2 \bullet (\cdots (\mathbf{x}_\ell \bullet \mathbf{v}) \cdots))$ where $\mathbf{x}_1, \dots, \mathbf{x}_\ell \in \mathfrak{g}$ and $\ell \ge 0$.

By the way, $\ell = 0$ gives us the empty product (no elements acting on **v**) which is just **v** itself.

- 2. Basic submodule stuff.
 - (a) Let W_1 and W_2 be submodules of V. Show that $W_1 \cap W_2$ and $W_1 + W_2$ are submodules. Is $W_1 \cup W_2$ a submodule? Discuss.
 - (b) Let $\varphi: V \to W$ be a g-module homomorphism. Also, let U be a submodule of W. Show that the inverse image of $U, \varphi^{-1}(U) = \{ \mathbf{v} \in V \mid \varphi(\mathbf{v}) \in U \}$, is a submodule of V which contains the kernel.
- 3. Let $\mathfrak{h} = \operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ be the Heisenberg Lie algebra (over \mathbb{C}) whose bracket structure is defined by: $[\mathbf{x}, \mathbf{y}] = \mathbf{z}$ and \mathbf{z} is central ($[\mathbf{x}, \mathbf{z}] = [\mathbf{y}, \mathbf{z}] = 0$). Let $\mathbb{C}[t]$ be the algebra of polynomials with complex coefficients (with indeterminate t). For $f(t) \in \mathbb{C}[t]$ define $\mathbf{x} \cdot f(t) = f'(t)$ (differentiation), $\mathbf{y} \cdot f(t) = tf(t)$ (multiplication by t), $\mathbf{z} \cdot f(t) = f(t)$ (multiplication by 1), and extend linearly. Assuming bilinearity of this action, show $\mathbb{C}[t]$ is indeed a \mathfrak{h} -module. Is this an irreducible module?
- 4. (EW page 74 Exercise 8.3) Notice that the matrices of the form $\begin{bmatrix} \star & \star & 0 \\ \star & \star & 0 \\ 0 & 0 & 0 \end{bmatrix}$ sitting inside $\mathfrak{sl}_3(\mathbb{C})$ give us an

isomorphic copy of $\mathfrak{sl}_2(\mathbb{C})$ (a similar observation allows us to treat $\mathfrak{sl}_k(\mathbb{C})$ as a subalgebra of $\mathfrak{sl}_n(\mathbb{C})$ for any $n \geq k$). This allows us to treat $V = \mathfrak{sl}_3(\mathbb{C})$ as an $\mathfrak{sl}_2(\mathbb{C})$ -module with action: $\mathbf{x} \cdot \mathbf{y} = [\mathbf{x}, \mathbf{y}]$ (we are restricting the adjoint action to the subalgebra $\mathfrak{sl}_2(\mathbb{C})$). By Weyl's theorem, we know that V is completely reducible. Show that $V \cong V(2) \oplus V(1) \oplus V(1) \oplus V(0)$ by finding a basis of *h*-eigenvectors ($h = \operatorname{diag}(1, -1, 0)$).

[*Note:* V(m) is the irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module of highest weight m.]

5. (EW page 75 Exercise 8.4) Suppose that V is a finite dimensional $\mathfrak{sl}_2(\mathbb{C})$ -module. Using Weyl's theorem and the classification of irreducible $\mathfrak{sl}_2(\mathbb{C})$ -modules, show that V is the direct sum of k irreducible submodules where $k = \dim(V_0) + \dim(V_1)$ and $V_{\lambda} = \{\mathbf{v} \in V \mid h \cdot \mathbf{v} = \lambda \mathbf{v}\}.$

The rest of EW's Exercise 8.4 is false. Explain why V is **not** determined by the eigenvalues of h alone!

6. Grad Problem (EW page 65 Exercise 7.11) Suppose that $\varphi : \mathfrak{g} \to \mathfrak{gl}(1, \mathbb{F})$ is a 1-dimensional representation of \mathfrak{g} . Show that $\varphi(\mathfrak{g}') = \{\mathbf{0}\}$. [Recall that $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$.]

Next, show that any representation of $\mathfrak{g}/\mathfrak{g}'$ can be viewed as a representation of \mathfrak{g} on which \mathfrak{g}' acts trivially.

When $\mathbb{F} = \mathbb{C}$, show that if $\mathfrak{g}' \neq \mathfrak{g}$, then \mathfrak{g} has infinitely many non-isomorphic 1-dimensional modules, but if $\mathfrak{g}' = \mathfrak{g}$, then the only 1-dimensional representation of \mathfrak{g} is the trivial representation.