Readings for Class #... (EW = Erdmann & Wildon, M = Misra)
  1. EW 1.1, M pages 1-2
  2. EW 1.2, M pages 2-4
  3. EW 1.3 & 1.7, M pages 2-6
  4. EW 1.3 & 1.7, M pages 2-6
  5. Problems
  6. M pages 5-6
  7. EW 1.3 & M pages 9-11
  8. EW 1.3, 1.5, and 1.6 & M 9-13
  9. Problems
  10. Problems
  11. EW 1.4 and 2.2 & M 16-20
  12. Problems
  13. Big Quiz #1
  14. EW 1.4 and 2.2 & M 16-20
  15. M 16-20
August
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
123
45678910
11121314151617
181920Introduction
Definition
22Examples, Basis, Dimension24
25Coord. Matrices, Structure Constants, Subalgebras27More Exmaples29Problem Presentations31
September
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1No Class3More Subalgebras5Direct Sums & Intro to Ideals7
8Ideals & Derivations10More Ideals/Problem Session12Problem Presentations14
15Quotients & Homomorphisms17Problem Session19Big Quiz #121
22Homomorphism Examples24Presenting Thms 3.8, 3.10, & 3.1126Class 1628
29Class 17
October
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1Class 183Class 195
6Class 208Class 2110Class 2212
13Class 2315Midterm17No Class19
20Analogies: Module vs. Representation & Submodules (EW 7.4)22Quotient modules, module maps & Isomorphism Theorems (EW 7.4, 7.6)24Irreducibility, Indecomposibility, Schur's Lemmas (EW 7.5, 7.7)26
27sl_2 representation theory (EW 8.2 & 8.3)29sl_2 rep thy part 2 (EW 8.1)31
November
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Linear Algebra: dual spaces2
3More duals & Root space decomposition.5Root Space Decomposition: Cartan subalgebras7the Killing form9
10Root Space Decomposition: Definition and reduction to sl_212Class 3514Class 3616
17Class 3719Class 3821Big Quiz #223
24Class 4026No Class28No Class30
December
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1Class 413Class 425Class 437
8Modern Algebra Final
3pm-5:30pm
101112Lie Algebra Final
12pm-2:30pm
14
15161718192021
22232425262728
293031
Tentative Topic for Class #...
  1. Syllabus/General Introduction (Definition of a Lie algebra)
  2. Fields/Characteristic/Complex Numbers
  3. Linear Algebra Review: LI/Spanning/Basis
  4. Linear Algebra Review: Coordinates/Coordinate Matrices 5
  5. Linear Algebra: Direct Sums
  6. Linear Algebra: Quotient Spaces
  7. Definition of a Lie Algebra/different forms of the Jacobi Id./Structure Constants
  8. Subalgebras/Ideals/Examples
  9. More Examples
  10. Homomorphisms/Quotients
  11. Algebras/Derivations (finished chapter 1)
  12. Big Quiz #1
  13. Ideal constructions
  14. Isomorphism Theorems/Lattice Isom Thm. (finish chapter 2)
  15. Low dimensional Examples (chapter 3)
  16. Survey of Skipped Chapters (chapters 4-6)
  17. Definition of a representation/examples
  18. Definition of a module/relationship with rep.
  19. Submodules/quotients
  20. Irreducible modules
  21. Homomorphisms/Schur's lemma (finish chapter 7)
  22. Midterm Exam
  23. sl2 a special basis E,F,H
  24. sl2 representation theory
  25. more sl2 theory
  26. discussion of Weyl's theorem/semisimple Lie algebras (finish chapter 8 skip 9)
  27. Linear Algebra: dual spaces
  28. Linear Algebra: inner products
  29. Root Space Decomposition: Cartan subalgebras
  30. Root Space Decomposition: Definition and reduction to sl_2
  31. Root Space Decomposition: Cartan subalgebras as inner product spaces (finish chapter 10)
  32. Abstract Root Systems: Definition and basics
  33. Big Quiz #2
  34. Abstract Root Systems: Bases, Cartan matrices, and Dynkin diagrams (finish chapter 11)
  35. A tour of types A, B, C, and D (classical algebras -- chapter 12)
  36. The classification (chapter 13)
  37. Serre's theorem (chapter 14)
  38. Weight Space Decomposition: Definition and reduction to sl_2
  39. Weight Space Decomposition: Examples
  40. Weight Space Decomposition: Big theorems
  41. Final Presentations.
Updated Tentative Schedule...
  1. Analogies: Module vs. Representation & Submodules (EW 7.4)
  2. Quotient modules, module maps & Isomorphism Theorems (EW 7.4, 7.6)
  3. Irreducibility, Indecomposibility, Schur's Lemmas (EW 7.5, 7.7)
  4. sl_2 representation theory (EW 8.2 & 8.3)
  5. sl_2 rep thy part 2 (EW 8.1 skip Ch. 9)
  6. Linear Algebra: dual spaces
  7. More duals & Root space decomposition.
  8. Root Space Decomposition: Cartan subalgebras
  9. The Killing form
  10. Root Space Decomposition: Definition and reduction to sl_2
  11. Root Space Decomposition: Cartan subalgebras as inner product spaces (finish chapter 10)
  12. Abstract Root Systems: Definition and basics
  13. Abstract Root Systems: Bases, Cartan matrices, and Dynkin diagrams (finish chapter 11)
  14. A tour of types A, B, C, and D (classical algebras -- chapter 12)
  15. Big Quiz #2
  16. The classification (chapter 13) & Serre's theorem (chapter 14)
  17. Weight Space Decomposition: Definition and reduction to sl_2
  18. Weight Space Decomposition: Examples
  19. Weight Space Decomposition: Big theorems
  20. Final Presentations.