Unless otherwise specified, V is a vector space over a field \mathbb{F} .

- #1 Coordinate Matrices Recall that when L is a Lie algebra and $x, y \in L$, we define $ad_x(y) = [x, y]$ (i.e. the adjoint map ad_x is left multiplication by x in L).
 - (a) Let $x \in L$. Show that $ad_x \in \mathfrak{gl}(L)$ (i.e. show that ad_x is a linear operator on L).
 - (b) Let $\alpha = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ (in that order) be the standard basis for $\mathfrak{gl}_2(\mathbb{F})$. Find $[\mathrm{ad}_{E_{ij}}]_{\alpha}$ for all i, j (i.e. compute the coordinate matrices for the adjoint operators relative to the standard basis).
 - (c) Let $\beta = \{E_{12}, E_{13}, E_{23}\}$ (in that order) be the standard basis for $\mathfrak{st}_3(\mathbb{F})$ (strictly upper triangular 3×3 matrices). Find $[\mathrm{ad}_{E_{ij}}]_{\beta}$ for (i,j) = (1,2), (1,3), (2,3).
- #2 Matrix Fun (Misra 1.27 part iv) Let $L = \operatorname{span}\{E_{12}, E_{31}, E_{32}\} \subseteq \mathfrak{gl}_3(\mathbb{F})$.
 - (a) Show that L is a subalgebra of $\mathfrak{gl}_3(\mathbb{F})$.
 - (b) Let $A \in L$. Show that A is nilpotent: $A^m = 0$ for $m \gg 0$ $(m \gg 0$ means "for m sufficiently large").
- #3 Differential Operators Let $V = \mathbb{F}[x]$ (i.e. polynomials with coefficients in \mathbb{F}). Note that V is a vector space (over \mathbb{F}). Define the following linear operators on V (i.e. endomorphisms on V):

$$I[f(x)] = f(x)$$
 $L_x[f(x)] = xf(x)$ $D_x[f(x)] = \frac{d}{dx} \left[f(x) \right]$

- (a) Let $L = \text{span}\{I, L_x, D_x\}$. Show that L is a subalgebra of $\mathfrak{gl}(V)$.
- (b) If we replace L_x with $K_x[f(x)] = \int_0^x f(t) dt$ (i.e. integrate and set constant equal to zero), would this still be a subalgebra? Explain.
- #4 Transpose (for graduate students) Let $T: \mathfrak{gl}_n(\mathbb{C}) \to \mathfrak{gl}_n(\mathbb{C})$ be defined by $T(A) = A^T$ for all $A \in \mathfrak{gl}_n(\mathbb{C})$.
 - (a) Show that the only eigenvalues of T are $\lambda = \pm 1$.
 - (b) Prove that the (-1)-eigenspace of T forms a subalgebra of $\mathfrak{gl}_n(\mathbb{C})$. What is its dimension?
 - (c) Is the 1-eigenspace a subalgebra? Explain.