Due: Wed., Nov. 8th, 2017

Let \mathfrak{g} be a Lie algebra over a field \mathbb{F} and let V be a \mathfrak{g} -module.

#1 Restriction (EW page 74 Exercise 8.3) Notice that the matrices of the form $\begin{bmatrix} \star & \star & 0 \\ \star & \star & 0 \\ 0 & 0 & 0 \end{bmatrix}$ sitting inside $\mathfrak{sl}_3(\mathbb{C})$

give us an isomorphic copy of $\mathfrak{sl}_2(\mathbb{C})$ (a similar observation allows us to treat $\mathfrak{sl}_k(\mathbb{C})$ as a subalgebra of $\mathfrak{sl}_n(\mathbb{C})$ for any $k \leq n$). This allows us to treat $V = \mathfrak{sl}_3(\mathbb{C})$ as an $\mathfrak{sl}_2(\mathbb{C})$ -module with action: $\mathbf{x} \cdot \mathbf{y} = [\mathbf{x}, \mathbf{y}]$ (we are restricting the adjoint action to the subalgebra $\mathfrak{sl}_2(\mathbb{C})$). By Weyl's theorem, we know that V is completely reducible.

Show that $V \cong V(2) \oplus V(1) \oplus V(1) \oplus V(0)$ by finding a basis of h-eigenvectors (h = diag(1, -1, 0)).

[Note: V(m) denotes the irreducible $\mathfrak{sl}_2(\mathbb{C})$ -module of highest weight m.]

#2 The Fall of Erdmann and Wildon (EW page 75 Exercise 8.4) Suppose that V is a finite dimensional $\mathfrak{sl}_2(\mathbb{C})$ -module. Using Weyl's theorem and the classification of irreducible $\mathfrak{sl}_2(\mathbb{C})$ -modules, show that V is the direct sum of k irreducible submodules where $k = \dim(V_0) + \dim(V_1)$ and $V_{\lambda} = \{\mathbf{v} \in V \mid h \cdot \mathbf{v} = \lambda \mathbf{v}\}$.

The rest of EW's Exercise 8.4 is false. Explain why V is **not** determined by the eigenvalues of h alone!

- **#3** (EW page 65 Exercise 7.11)
 - (a) Suppose that $\varphi : \mathfrak{g} \to \mathfrak{gl}(1,\mathbb{F})$ is a 1-dimensional representation of \mathfrak{g} . Show that $\varphi(\mathfrak{g}') = \{0\}$. [Recall that $\mathfrak{g}' = [\mathfrak{g},\mathfrak{g}]$.]
 - (b) (Grad Students) Show that any representation of $\mathfrak{g}/\mathfrak{g}'$ can be viewed as a representation of \mathfrak{g} on which \mathfrak{g}' acts trivially.
 - (c) (Grad Students) When $\mathbb{F}=\mathbb{C}$, show that if $\mathfrak{g}'\neq\mathfrak{g}$, then \mathfrak{g} has infinitely many non-isomorphic 1-dimensional modules, but if $\mathfrak{g}'=\mathfrak{g}$, then the only 1-dimensional representation of \mathfrak{g} is the trivial representation.

Note: For 3(a) it may be worth noting that we can identify $\mathfrak{gl}(1,\mathbb{F}) = \mathbb{F}$ (these are naturally isomorphic). Having done so, in part (a) we are showing that if φ is a 1-dimensional representation (so $\varphi \in \mathfrak{g}^*$ and it is a homomorphism), then $\varphi(\mathfrak{g}') = \mathbf{0}$. It might be helpful to note that the converse is also true: if φ is a dual vector vanishing on \mathfrak{g}' , then φ is a 1-dimensional representation (if we identify $\mathfrak{gl}(1,\mathbb{F})$ and \mathbb{F}).