Homework #7

Due: Wed., Nov. 15th, 2017

Let \mathfrak{g} be a Lie algebra over a field \mathbb{F} .

- #1 Dualing Problem: Consider $\beta = \{(1,0,1), (1,2,0), (0,1,-1)\}$ (this is a basis for \mathbb{R}^3).
 - (a) Find the dual basis β^* . [Give formulas for each dual vector. For example: f(x, y, z) = 2x + 5y z. Unnecessary note: f is **not** one of the elements of β^* .]
 - (b) Explain why $f(x, y, z) = x^2$ is not in $(\mathbb{R}^3)^*$.
 - (c) Explain why f(x, y, z) = x is in $(\mathbb{R}^3)^*$ and compute $[f]_{\beta^*}$ (this is f's β^* -coordinate vector).
 - (d) Find the change of basis matrices from $\operatorname{std}^* = \{\mathbf{i}^*, \mathbf{j}^*, \mathbf{k}^*\}$ (the standard dual basis) to β^* (i.e. $[I]_{\operatorname{std}^*}^{\beta^*}$). Also, find the change of basis matrices from to β^* to std^* (i.e. $[I]_{\beta^*}^{\operatorname{std}^*}$).
 - (e) What is the relationship between $[I]_{\mathrm{std}^*}^{\beta^*}$ and $[I]_{\mathrm{std}}^{\beta}$? Given two arbitrary bases α and γ for an arbitrary finite dimensional vector space (over some field \mathbb{F}), conjecture a relationship between $[I]_{\alpha}^{\gamma}$ and $[I]_{\alpha^*}^{\gamma^*}$.
 - (f) [Grad Students] Prove your conjecture from part (e).
- #2 Look at me, Mom. I'm a module too! Let V and W be \mathfrak{g} -modules.
 - (a) The space of linear maps from V to W can be turned into a \mathfrak{g} -module as follows: Let $T \in \text{Hom}(V, W) = \{S : V \to W \mid S \text{ is linear}\}$ and $g \in \mathfrak{g}$. Then for all $\mathbf{v} \in V$, define

$$(x \bullet T)(\mathbf{v}) = x \bullet T(\mathbf{v}) - T(x \bullet \mathbf{v}).$$

First, show $x \bullet T \in \text{Hom}(V, W)$. Then show that this turns Hom(V, W) into a \mathfrak{g} -module (don't forget to check bilinearity).

- (b) We can turn \mathbb{F} into a \mathfrak{g} -module via the trivial action: $x \bullet s = 0$ for all $s \in \mathbb{F}$. Explain how this then allows us to define a dual module V^* for any \mathfrak{g} -module V [Hint: Use part (a).] What is the action of \mathfrak{g} on V^* ?
- #3 Like Mt. Fuji Reflected in a Lake: Recall that V(m) is the $\mathfrak{sl}_2(\mathbb{C})$ module with highest weight m (where m is a non-negative integer).
 - (a) Prove that $V(1)^* \cong V(1)$.
 - (b) [Grad Students] Prove $V(m)^* \cong V(m)$.
 - (c) [**Everyone**] Assuming the grad student problem (part (c)) and the fact that as \mathfrak{g} -modules: $\left(\bigoplus_{i=1}^{\ell} W_i\right)^* \cong$

 $\bigoplus_{i=1}^{\ell} W_i^* \text{ (for any finite dimensional } \mathfrak{g}\text{-modules } W_i), \text{ prove that } V^* \cong V \text{ for any finite dimensional } \mathfrak{sl}_2(\mathbb{C})\text{-module } V. \text{ Slogan: } \mathfrak{sl}_2\text{-modules are self dual!}$