
Math 4010/5530 Galois Correspondence Oct. 2019

The goal of this sheet is to thoroughly explore the splitting field of x3 − 2 ∈ Q[x] and its Galois group.

First, recall that ω = e2πi/3 =
−1 +

√
3i

2
is a primitive third root of unity. Of course, so is ω2 =

−1−
√

3i

2
. Let

α = 3
√

2 = 21/3 (i.e., the real root of x3 − 2). Then since (ωα)3 = ω3α3 = 1 · 2 = 2 and likewise (ω2α)3 = 2, we have
that x3 − 2 = (x− α)(x− ωα)(x− ω2α). Therefore, E = Q[α, ωα, ω2α] is the splitting field of x3 − 2 (over Q).

While the above description of the splitting field is accurate, it is not the best description for constructing
automorphisms. Instead, following our discussion in class, we might first want to attach roots of unity (i.e., ω and
ω2) and then attach a root (and thus all roots) of x3 − 2. Further, notice that ω = (ωα)/α ∈ E so that Q[α, ω] ⊆ E.
And clearly since α, ωα, ω2α ∈ Q[α, ω], we have that in fact E = Q[α, ω]. This suggests the following (radical) tower:
Q ⊆ Q[ω] ⊆ Q[α, ω]. Notice that the first step in the tower is a pure extension of type 2: the minimal polynomial
for ω is the cyclotomic polynomial Φ2(x) = x2 + x+ 1. The second step in the tower is a pure extension of type 3:
the minimal polynomial for α = 3

√
2 (working over Q[ω]) still is x3 − 2.

This also confirms that [Q[α, ω] : Q] = [Q[α, ω] : Q[ω]] · [Q[ω] : Q] = 3 · 2 = 6. In more detail, notice that a basis
for the first extension (i.e., Q[ω]/Q) is {1, ω} and a basis for the second extension (i.e., Q[α, ω]/Q[ω]) is {1, α, α2}.
Thus a basis for the full extension (i.e., Q[α, ω]/Q) is the product of these bases {1, ω, α, ωα, α2, ωα2}.

Now let’s build all of the Galois automorphisms. We start with the identity
map on Q: 1Q. (Note: To build a Galois group, we build up from the identity
map, but in this case the identity map also happens to be the only automorphism
of Q.) Our extension theorem, says the extensions of the identity to Q[ω] send ω
to any root (i.e., ω or ω2) of the irreducible polynomial: x2 + x + 1 (ω’s minimal
polynomial). Thus ω must either map to itself or to ω2. Let’s call the resulting
isomorphisms ϕ1 and ϕ2. We have ϕ1: 1 7→ 1 and ω 7→ ω (the identity on Q[ω]) as
well as ϕ2: 1 7→ 1 and ω 7→ ω2.
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Next, we extend both ϕ1 and ϕ2 from Q[ω] to Q[α, ω]. Note the degree of α’s minimal polynomial (over Q[ω]) is
[Q[α, ω] : Q[ω]] = 3 and α is a root of x3 − 2 ∈ Q[ω][x], so x3 − 2 is still α’s minimal polynomial over Q[ω] (and thus
irreducible). Once again, our extension theorem says we can extend any automorphism of Q[ω] (i.e., ϕ1 or ϕ2) to
Q[α, ω] sending α to any root of x3− 2 (i.e., α, ωα, or ω2α). So ϕ1 can be extended in three ways which we call ψ11,
ψ12, and ψ23. Likewise we extend ϕ2 and get ψ21, ψ22, and ψ23. The table below summarizes these automorphisms
by indicating their action on our basis for Q[α, ω]:

ψ11 ψ12 ψ13

1 7→ 1 1 7→ 1 1 7→ 1
ω 7→ ω ω 7→ ω ω 7→ ω
α 7→ α α 7→ ωα α 7→ ω2α = −α− ωα

ωα 7→ ωα ωα 7→ ω2α = −α− ωα ωα 7→ α
α2 7→ α2 α2 7→ ω2α2 = −α2 − ωα2 α2 7→ ωα2

ωα2 7→ ωα2 ωα2 7→ α2 ωα2 7→ ω2α2 = −α2 − ωα2

ψ21 ψ22 ψ23

1 7→ 1 1 7→ 1 1 7→ 1
ω 7→ ω2 = −1− ω ω 7→ ω2 = −1− ω ω 7→ ω2 = −1− ω
α 7→ α α 7→ ωα α 7→ ω2α = −α− ωα

ωα 7→ ω2α = −α− ωα ωα 7→ α ωα 7→ ωα
α2 7→ α2 α2 7→ ω2α2 = −α2 − ωα2 α2 7→ ωα2

ωα2 7→ ω2α2 = −α2 − ωα2 ωα2 7→ ωα2 ωα2 7→ α2

Let’s unpack where the formula for ψ22 comes from. Recall that ψ22 extends ϕ2. So we send ψ22(ω) = ϕ2(ω) = ω2.
Also, recall 0 = Ψ2(ω) = ω2 + ω + 1, so ω2 = −ω − 1. Thus ψ22(ω) = −ω − 1. Next, ψ22 is the second extension of
ϕ2 so ψ22(α) = ωα. All the rest of the values of ψ22 follow from these values. For example, any automorphism must
map ψ22(1) = 1, but we could also note ψ22(1) = ψ22(ω3) = (ψ22(ω))3 = (ω2)3 = ω6 = 1 where we pull an exponent
out of our automorphism. Next, ψ22(ωα) = ψ22(ω)ψ22(α) = ω2 · ωα = ω3α = α and ψ22(α2) = (ψ22(α))2 = (ωα)2 =
ω2α2 = −α2 − ωα2. Finally, ψ22(ωα2) = ψ22(ω)ψ22(α2) = ω2 · ω2α2 = ωα2. In general, (for a, b, c, d, e, f ∈ Q):

ψ22(a+ bω + cα+ dωα+ eα2 + fωα2) = a+ b(−1− ω) + cωα+ dα+ e(−α2 − ωα2) + fωα2

= (a− b)− bω + dα+ cωα− eα2 + (f − e)ωα2

Notice that we do not permute the basis elements. On the other hand, these maps do permute the roots of
x3 − 2. For example, ψ22(α) = ωα, ψ22(ωα) = α, and ψ22(ω2α) = ω4 · ωα = ω2α.
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Side note: One might ask why we didn’t just define the automorphisms in terms of permutations to begin with?!
Well, we could have. For this particular example, our Galois group is isomorphic to S3, so every permutation
corresponds with an automorphism. However, if this were not the case, figuring out which permutations are valid
permutations can be very difficult. If you pick a random splitting field and randomly shuffle roots around, it’s possible
that such a shuffling cannot be extended to a mapping on the whole field that preserves addition and multiplication.
In other words, a permutation of generators for a field does not generally extend to an automorphism.

If we label the roots α ↔ 1, ωα ↔ 2, and ω2α ↔ 3, then ψ22 is the permutation (12) (swap 1 and 2 while
fixing 3). This leads to an explicit isomorphism F : Gal(Q[α, ω]/Q) → S3 where F (ψ11) = (1), F (ψ12) = (123),
F (ψ13) = (132), F (ψ21) = (23), F (ψ22) = (12), and F (ψ23) = (13).

Using this isomorphism to identify the Galois group and S3 (e.g., 〈(23)〉 = {(1), (23)} = {ψ11, ψ21}), we can
identify all of the fixed fields: (Q[α, ω])(1) = Q[α, ω], (Q[α, ω])〈(23)〉 = Q[α], (Q[α, ω])〈(13)〉 = Q[ωα],

(Q[α, ω])〈(12)〉 = Q[ω2α], (Q[α, ω])A3 = Q[ω], and (Q[α, ω])S3 = Q.
Explicitly calculating fixed fields can be tricky. However, using the fundamental theorem of Galois theory (iden-

tifying the dualized subgroup lattice with a subfield lattice) makes the determination fairly straight forward. For
example, obviously, 〈(12)〉 fixes 3↔ ω2α, so (Q[α, ω])〈(12)〉 = Q[ω2α].

Notice that ω is fixed by ψ11, ψ12, and ψ13 (i.e., A3 = {(1), (123), (132)}). Another way to see that this subgroup
and intermediate field go together, notice that [Q[ω] : Q] = 2 and the only subgroup of index 2 = [S3 : A3] is A3. So
these must go together: Q[α, ω]A3 = Q[ω].

The lattice of intermediate fields of Q[α, ω]/Q and subgroup lattice of S3 are shown below. The numbers on the
edges indicate degrees in the case of fields and indices in the case of subgroups.
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Now {(1)}, A3, and S3 are normal subgroups of S3. This means that Q[α, ω], Q[ω], and Q are all Galois extensions
of Q. In fact, they are splitting fields of x3 − 2, x2 + x+ 1, and 1 respectively. Alternatively, Q[α, ω]Gal(Q[α,ω]/Q) =
Q[α, ω]S3 = Q, Q[ω]Gal(Q[ω]/Q) = Q[ω]{1,conjugation} = Q, and QGal(Q/Q) = Q{1} = Q (thus they are Galois extensions).

Notice that (123)〈(23)〉(123)−1 = {(123)(1)(123)−1, (123)(23)(123)−1} = {(1), (123)(23)(132)} = {(1), (13)} =
〈(13)〉. Likewise, (123)〈(13)〉(123)−1 = 〈(12)〉 and (123)〈(12)〉(123)−1 = 〈(23)〉 (these subgroups are conjugate to each
other). This means that these subgroups are not normal subgroups (normal subgroups are self-conjugate). Therefore,
the corresponding intermediate fields are conjugate subfields and also those fields fail to be Galois subfields (i.e.,
they are not Galois extensions of Q). In particular, Q[α] corresponds with 〈(12)〉, Q[ωα] corresponds with 〈(13)〉,
and Q[ω2α] corresponds with 〈(12)〉. In addition, (123) is the automorphism ψ12. We have ψ12(Q[α]) = Q[ωα],
ψ12(Q[ωα]) = Q[ω2α], and ψ12(Q[ω2α]) = Q[α].

We could also see directly that these are not Galois extensions (of Q). For example, Q[α] is a degree 3 extension
of Q (α is a root of the irreducible cubic polynomial x3 − 2). Thus {1, α, α2} is a basis for Q[α] (working over Q).
Suppose ϕ ∈ Gal(Q[α]/Q). We always have ϕ(1) = 1. Next, ϕ must send roots (of polynomials in Q[x]) to roots.
Since α is a root of x3 − 2 ∈ Q[x], we must have that ϕ(α) is a root of x3 − 2. However, the roots of x3 − 2 are α,
ωα, and ω2α. Notice that neither ωα nor ω2α belong to Q[α]. Therefore, ϕ(α) = α and since it’s an automorphism,
we also have ϕ(α2) = ϕ(α)2 = α2. This means that ϕ is the identity map! Thus Gal(Q[α]/Q) = {1} so that
Q[α]Gal(Q[α]/Q) = Q[α]{1} = Q[α] 6= Q (this is not a Galois extension). Likewise, for Q[α]’s conjugate fields.

Of course this makes sense. If Q[α] were Galois, it would split any irreducible (over Q) where one of the roots is
in Q[α]. However, it has the root α of x3 − 2 but not the other two roots. In some sense, Galois extensions have a
completeness to them. Q[α] isn’t complete because it’s missing ωα and ω2α (the conjugates of α). A nice/complete
subfield should contain whole sets of “conjugate” elements.

One final note: Since we are working over Q (the prime subfield of any field of characteristic 0) and since
all automorphisms automatically fix their prime subfields, any Galois group of an extension over Q is just the
automorphism group of that extension field. For example, S3

∼= Gal(Q[α, ω]/Q) = Aut(Q[α, ω]) and Aut(Q[α]) =
Gal(Q[α]/Q) = {1}.
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