
Alternating Groups: An An Even (or is it an Odd?) Handout

Even vs. Odd:
We say a permutation is even if it can be written as a product of an even number of (usually

non-disjoint) transpositions (i.e., 2-cycles). Likewise a permutation is odd if it can be written as
a product of an odd number of transpositions. The first question is, “Can any permutation be
written as a product of transpositions?” The answer is “Yes.” ...well if we’re working in Sn for
n > 1 (of course, S1 doesn’t have any transpositions...it just has the identity). For the remainder
of this handout, fix some n > 1. Recall the trick:

(a1a2 . . . a`) = (a1a`)(a1a`−1) · · · (a1a3)(a1a2)
Also, (1) = (12)(12). Therefore, any cycle of any length can be written as a product of transpo-

sitions. Now since every permutation can be written as a product of (disjoint) cycles, we can use
this trick on each cycle and get: Every permutation can be written as a product of transpositions.
For example, (123)(4567) = (13)(12)(47)(46)(45).

Next, consider: (123) = (13)(12) = (34)(14)(34)(12) = (34)(12)(12)(14)(34)(12) = · · · Notice
that (123) can be written as a product of transpositions in (infinitely) many different ways. However,
the three ways shown above have 2, 4, and 6 transpositions respectively – thus (123) is even. Our
next question is, “It is possible that (123) or any other permutation is both even and odd?” The
answer is “No” but this requires some proof.

Lemma: The identity is even — and not odd.

proof: First, we know that (1) = (12)(12), so the identity is even, but is it possible it’s also odd?
Suppose that (1) = (a1a2) · · · (a`−1a`). We want to show that there must be an even number of

these transpositions. First, let’s see how to push transpositions past each other. There are 4 cases
of interest: Let a, b, c, d be distinct elements of the set {1, 2, . . . , n}.
• (cd)(ab) = (ab)(cd) — disjoint cycles commute.

• (bc)(ab) = (acb) = (cba) = (ca)(cb) — multiply out, cyclicly permute, transposition trick.

• (ac)(ab) = (abc) = (bca) = (ba)(bc) — same as before.

• (ab)(ab) = (1)
In the all cases, we made sure a isn’t in the second transposition. In the last case, we canceled a
out completely!

Now suppose a is the largest number appearing among all the transpositions in (a1a2) · · · (a`−1a`).
We can take the right-most occurrence of a and move it to the left. As we move all of the a’s to
the left, at some point, the a’s must cancel out (we have to end up with the “(ab)(ab)” case). If
not, we would have (1) = (ab)τ with no a’s appearing in τ . But this is impossible since τ maps a
to a (no occurrences of a in τ) so (ab)τ sends a to b. It’s not the identity! Therefore, we can get rid
of all of the occurrences of a by canceling out transpositions in pairs. Continuing in this fashion
(after a is gone pick the next smallest remaining number), we will eventually cancel out all of the
transpositions. Since cancelations always occur in pairs, it must be that (1) was written as an even
number of transpositions. Therefore, (1) cannot be odd. �

Theorem: Every permutation in Sn (n > 1) is either even or odd, but not both.

proof: Let σ ∈ Sn. We know by the transposition trick above that σ can be written as a product
of transpositions. Suppose σ = (a1a2) · · · (a2`−1a2`) = (b1b2) · · · (b2k−1b2k). Then
(1) = σσ−1 = (a1a2) · · · (a2`−1a2`)[(b1b2) · · · (b2k−1b2k)]−1

= (a1a2) · · · (a2`−1a2`)(b2k−1b2k)−1 · · · (b1b2)−1 = (a1a2) · · · (a2`−1a2`)(b2k−1b2k) · · · (b1b2)
So we have written (1) as the product of `+ k transpositions. Our lemma says that `+ k must be
even. Therefore, either both k and ` are even or both are odd. �
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Quick Computations:
We can quickly determine whether a permutation is even or odd by looking at its cycle structure.

First, notice that we can write an `-cycle as a product of `−1 transpositions. Therefore, even length
cycles are odd permutations and odd length cycles are even permutations (confusing but true). Thus
the 3-cycle (123) is an even permutation. More confusion: |(123)| = 3 so (123) has odd order!?!

Next, notice that if σ can be written as a product of ` transpositions and τ can be written as
a product of k transpositions, then στ can be written as a product of ` + k transpositions. Then
we just recall that “even plus even is even” “odd plus odd is even” and “even plus odd is odd”. So
two even or two odd permutations multiplied (i.e. composed) together give us an even permutation
and an odd and an even permutation multiplied together give us an odd permutation.

Example: (123)(45)(6789) is even since (123) = even, (45) = odd, and (6789) = odd, so even +
odd + odd = even. Alternatively, (123)(45)(6789) = (13)(12)(45)(69)(68)(67) — 6 transpositions,
therefore, even.

The inverse of a permutation can be computed merely by writing it down backwards:
((123)(45))−1 = (54)(321) = (132)(45) (having good manners we “simplified” it). Thus it is obvious
why the inverse of an even permutation is even and the inverse of an odd permutation is odd.

The Sign Homomorphism:
Since we have well-defined notions of even and odd-ness, we can now define the map:

sgn(σ) = (−1)σ =

{
+1 σ is even
−1 σ is odd

}
This map is called the “sign homomorphism”. It can be used to define the determinant of a

matrix. Let A = (aij) be an n× n matrix with entries aij. Then

det(A) =
∑
σ∈Sn

(−1)σa1σ(1)a2σ(2) · · · anσ(n)

In particular, consider a 2× 2 matrix. S2 = {(1), (12)}. Let σ = (1). σ is even so (−1)σ = +1.
Also, let τ = (12). τ is odd so (−1)τ = −1. Thus det(A) = (−1)σa1σ(1)a2σ(2) + (−1)τa1τ(1)a2τ(2) =
a11a22 − a12a21 (the regular 2× 2 determinant formula).

The Alternating Group:
From the last discussion we see that: even composed with even is even, the identity is always

even, and the inverse of an even permutation is even. Putting this together we arrive at the following:

Proposition: For any n > 1, An = {σ ∈ Sn |σ is even } is a subgroup of Sn.

Actually we can say even more. Notice that

kernel(sgn) = {σ ∈ Sn | sgn(σ) = 1} = {σ ∈ Sn | σ is even} = An.

Therefore, since An is the kernel of the sign homomorphism, An is a normal subgroup of Sn. An is
called the alternating group on n characters. These groups are very important. In fact, An is a
non-abelian simple group when n ≥ 5 (as we’ll see later).

Examples: A2 = {(1)} and A3 = {(1), (123), (132)}. For example, (123)(45)(6789) ∈ A9.

Notice that multiplying by (12) sends even permutations to odd permutations and vice-versa.
The map L(σ) = (12)σ is a bijection from An to the set of odd permutations. Thus exactly half of
the permutations in Sn are even and half are odd. This implies that the order of An is n!/2. For
example: |A3| = 3!/2 = 3 and |A4| = 4!/2 = 12.

It is also interesting to note that every subgroup of Sn is either all even or half even & half odd.
Why? Consider a subgroup H which contains an odd element σ. Then left multiplication by σ
gives bijection between the even and odd elements of H.
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A4’s Subgroups and Quotients:
First, recall that A1 really isn’t even defined, A2 is the trivial group, and A3 = 〈(123)〉 is cyclic.

These are kind of anomalies. A4 is a bit different from otherAn as well. Let’s study it in detail.
We’ll begin with the Cayley table for A4.

A4 = {(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

(1) (12)(34) (13)(24) (14)(23) (123) (243) (142) (134) (132) (143) (234) (124)

(1) (1) (12)(34) (13)(24) (14)(23) (123) (243) (142) (134) (132) (143) (234) (124)
(12)(34) (12)(34) (1) (14)(23) (13)(24) (243) (123) (134) (142) (143) (132) (124) (234)
(13)(24) (13)(24) (14)(23) (1) (12)(34) (142) (134) (123) (243) (234) (124) (132) (143)
(14)(23) (14)(23) (13)(24) (12)(34) (1) (134) (142) (243) (123) (124) (234) (143) (132)

(123) (123) (134) (243) (142) (132) (124) (143) (234) (1) (14)(23) (12)(34) (13)(24)
(243) (243) (142) (123) (134) (143) (234) (132) (124) (12)(34) (13)(24) (1) (14)(23)
(142) (142) (243) (134) (123) (234) (143) (124) (132) (13)(24) (12)(34) (14)(23) (1)
(134) (134) (123) (142) (243) (124) (132) (234) (143) (14)(23) (1) (13)(24) (12)(34)

(132) (132) (234) (124) (143) (1) (13)(24) (14)(23) (12)(34) (123) (142) (134) (243)
(143) (143) (124) (234) (132) (12)(34) (14)(23) (13)(24) (1) (243) (134) (142) (123)
(234) (234) (132) (143) (124) (13)(24) (1) (12)(34) (14)(23) (142) (123) (243) (134)
(124) (124) (143) (132) (234) (14)(23) (12)(34) (1) (13)(24) (134) (243) (123) (142)

Let’s find all of the subgroups of A4. First, we have all of the cyclic subgroups.

• 〈(1)〉 = {(1)}

• 〈(12)(34)〉 = {(1), (12)(34)}

• 〈(13)(24)〉 = {(1), (13)(24)}

• 〈(14)(23)〉 = {(1), (14)(23)}

• 〈(123)〉 = 〈(132)〉 = {(1), (123), (132)}

• 〈(124)〉 = 〈(142)〉 = {(1), (124), (142)}

• 〈(134)〉 = 〈(143)〉 = {(1), (134), (143)}

• 〈(234)〉 = 〈(243)〉 = {(1), (234), (243)}
By looking at the Cayley table we can see if we tried to form a subgroup with a couple of 3-cycles

(which aren’t inverses of each other), we end up generating all of A4. For example: (123)(134) =
(234) so if a subgroup contains (123) and (134), it must also contain (234) and inverses and the
identity — we’re already up to 2 + 2 + 2 + 1 = 7 elements and since the order of a subgroup divides
|A4| = 12, we must conclude that any subgroup containing both (123) and (134) is all of A4.

Next, what if we try to have a 3-cycle and an element like (12)(34)? Say (123) and (12)(34).
Well, (123)(12)(34) = (134) so we have two different 3-cycles again and thus we must generate the
whole group A4. Summing up (so far), any subgroup with at least one 3-cycle must either be one
of the 4 cyclic subgroups of order 3 or all of A4.

What about the non 3-cycle elements? (12)(34) (13)(24) = (14)(23) So to we can’t have a
subgroup with just two of these elements. We must include all 3 of them. Let’s look at H =
{(1), (12)(34), (13)(24), (14)(23)}. Looking at the table, we can see H is closed – so H is a subgroup
(by the finite subgroup test).

Therefore, adding. . .

• H = {(1), (12)(34), (13)(24), (14)(23)} • A4

to the list (of cyclic subgroups) completes our list of all of the subgroups of A4. Our next question
is, “Which subgroups are normal?”

The following calculations show that gKg−1 6= K for each cyclic subgroup K (other than the
trivial subgroup 〈(1)〉). Therefore, they are not normal. (Does that mean they’re weird?)

• (123)〈(12)(34)〉(123)−1 = 〈(14)(23)〉 6= 〈(12)(34)〉

• (123)〈(13)(24)〉(123)−1 = 〈(12)(34)〉 6= 〈(13)(24)〉

• (123)〈(14)(23)〉(123)−1 = 〈(13)(24)〉 6= 〈(14)(23)〉

• (124)〈(123)〉(124)−1 = 〈(243)〉 6= 〈(123)〉

• (123)〈(124)〉(123)−1 = 〈(234)〉 6= 〈(124)〉

• (123)〈(134)〉(123)−1 = 〈(142)〉 6= 〈(134)〉

• (123)〈(234)〉(123)−1 = 〈(143)〉 6= 〈(234)〉
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Of course the trivial subgroup 〈(1)〉 and A4 itself are normal in A4. (For any group G, {1} and G
are normal subgroups of G.)

Now the only subgroup left to consider is H = {(1), (12)(34), (13)(24), (14)(23)}.
• H = {(1), (12)(34), (13)(24), (14)(23)}

H = (1)H = (12)(34)H = (13)(24)H = (14)(23)H = H(1) = H(12)(34) = H(13)(24) = H(14)(23)

• (123)H = {(123), (134), (243), (142)}
(123)H = (134)H = (243)H = (142)H = H(123) = H(134) = H(243) = H(142)

• (132)H = {(132), (234), (124), (143)}
(132)H = (234)H = (124)H = (143)H = H(132) = H(234) = H(124) = H(143)

So H C A4.
Let’s look at all of the quotients of A4. First, the trivial cases.

• A4
��
A4

∼= {1} [A4 : A4] = 1 so the quotient group has order 1 and thus is the trivial group.

• A4
��
{(1)}

∼= A4 Quotienting by the trivial subgroup “does nothing”.

The quotient by H = {(1), (12)(34), (13)(24), (14)(23)} is more interesting.∣∣∣∣A4
��
H

∣∣∣∣ =
|A4|

��
|H|

= [A4 : H] =
12

4
= 3

Since there is only 1 group order 3 (up to isomorphism),
A4
��
H
∼= Z3

Example: Multiplying cosets.

(243)H (124)H = (243)(124)H = (14)(23)H = H

Therefore, ((243)H)−1 = (124)H.

Working out all of the other cases, we get the following Cayley table for
A4
��
H

:

H (123)H (132)H

H H (123)H (132)H
(123)H (123)H (132)H H
(132)H (132)H H (123)H

∼=

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Notice that since we ordered the elements in the original Cayley table according to cosets of H,
we have 4 × 4 “blocks” of the original table corresponding to the entries of the quotient group’s
table.

Next, because H itself is Abelian, so any subgroup of H is automatically normal (in H). Thus

〈(12)(34)〉CH. Then noting that
H
��
〈(12)(34)〉

∼= Z2, we have the following composition series for

A4:

A4 H 〈(12)(34)〉 {1}
Z3 Z2 Z2
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The subgroup lattice for A4... A4

H

〈(13)(24)〉〈(12)(34)〉 〈(14)(23)〉
〈(234)〉〈(134)〉〈(124)〉〈(123)〉

{(1)}

An is Simple (for n ≥ 5):

Definition: G is simple if |G| > 1 and G has no non-trivial proper normal subgroups.

Theorem: If G is an abelian simple group, then G ∼= Zp for some prime p.

proof: Let G be an abelian simple group.
Remember that every subgroup of an abelian group is automatically normal (left cosets = right

cosets because everything commutes).
Let x ∈ G with x 6= 1 (1 is the identity of G). Then 〈x〉 is a non-trivial normal subgroup of G.

So since G is simple, we must have that G = 〈x〉 (If G is abelian and simple, G must be cyclic).
First, suppose G is infinite. The only infinite cyclic group (up to isomorphism) is Z. But this is

not a simple group since 2Z is a non-trivial proper (normal) subgroup. Therefore, G must be finite.
Suppose |G| = n. If n is composite, say with proper divisors k 6= 1 and ` 6= 1 such that n = k`,

then xn/k is an element of order `. So 〈xn/k〉 is a non-trivial proper (normal) subgroup of G (of
order `). Thus n must be prime (n can’t be 1 since simple groups are non-trivial).

Now suppose |G| = p (p prime). Let N be a non-trivial (normal) subgroup of G. Since |N | must
divide |G| = p and |N | 6= 1 (it’s non-trivial). We must have |N | = p and so N = G. Thus G has no
non-trivial (normal) subgroups. Thus it’s simple. �

Lemma: Let N be a normal subgroup of An. If N contains a 3-cycle, then N = An.

proof: Suppose N contains a 3-cycle. We can relabel 1, 2, . . . , n so this 3-cycle is labeled (123). So
without loss of generality assume (123) ∈ N and so (123)2 = (132) ∈ N since N is a subgroup.

If n = 3, then A3 = {(1), (123), (123)2} ⊆ N so N = A3. So assume n ≥ 4 and pick some k ≥ 4.
(12)(3k)(132)[(12)(3k)]−1 = (12)(3k)(132)(12)(3k) = (12k) ∈ N . So (12k) ∈ N for all k ≥ 3.

Let a, b, c be distinct numbers between 3 and n. (1a2) = (12a)(12a) ∈ N . (1ab) = (12b)(12a)(12a) ∈
N . (2ab) = (12b)(12b)(12a) ∈ N . (abc) = (12a)(12a)(12c)(12b)(12b)(12a) ∈ N . Thus N contains
all 3-cycles.

Finally notice that if a, b, c, d are all distinct, then (ab)(cd) = (adb)(adc) and (ab)(ac) = (acb)
and (ab)(ab) = (1) so any permutation written as a product of an even number of transpositions
can be written as a product of 3-cycles. Thus An is generated by 3-cycles. So if N contains all the
3-cycles, then N = An. �

Theorem: An is simple when n ≥ 5 and n = 3.

proof: Note that An only makes sense for n ≥ 2. A2 is trivial and A4 has a proper normal subgroup
H = {(1), (12)(34), (13)(24), (14)(23)}, so A2 and A4 are not simple. A3 = 〈(123)〉 ∼= Z3 so it’s
simple (& abelian). Now let n ≥ 5 and let N be a non-trivial normal subgroup of An.
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Case 1: N has an element with a cycle of length ≥ 4. Without loss of generality we can relabel
1, 2, . . . , n so that this cycle is (123 · · · r) for some r ≥ 4. So there exists some σ = (12 · · · r)τ ∈ N
where (12 · · · r) and τ are disjoint. Consider (123) ∈ An so that (123)σ(123)−1 ∈ N since N is
normal. Thus σ−1(123)σ(123)−1 ∈ N since N is a subgroup and thus closed under inverses and the
product. σ−1(123)σ(123)−1 = τ−1(r · · · 321)(123)(123 · · · r)τ(123)−1 = τ−1τ(r · · · 321)(2314 · · · r) =
(13r) ∈ N (τ commutes because it’s disjoint from {1, . . . , r}). Thus N contains a 3-cycle so N = An.

Case 2: N has an element with a 3-cycle and no cycles of length > 3 (which is covered by case 1).
Call this element σ.

First, suppose σ has at least 2 disjoint 3-cycles. Without loss of generality suppose they
are (123) and (456) so σ = (123)(456)τ where τ is disjoint from (123) and (456). Consider
(124) ∈ An. Then (124)σ(124)−1 ∈ N and so σ−1(124)σ(124)−1 ∈ N . Thus σ−1(124)σ(124)−1 =
τ−1(456)−1(123)−1(124)(123)(456)τ(124)−1 = (654)(321)(124)(123)(456)(421) = (14263) ∈ N . So
N contains a cycle of length > 3. Thus N = An by case 1.

Next, suppose σ has 1 cycle of length 3 and then just disjoint transpositions. Without loss of
generality suppose this 3-cycle is (123). So σ = (123)τ ∈ N where τ is the product of disjoint
transpositions so that τ = τ−1. Then σ2 ∈ N since N is a subgroup. σ2 = (123)τ(123)τ =
(123)2τ 2 = (123)2 = (132). Thus N contains a 3-cycle so N = An.

The only possibility left is that σ is just a 3-cycle. But then N contains a 3-cycle so N = An.

Case 3: N contains an element which is the product of disjoint transpositions. Call it σ. Now since
N is a subset of An, σ is even. So σ must contain at least 2 disjoint transpositions. Without loss of
generality assume these transpositions are (12) and (34). So σ = (12)(34)τ where τ is disjoint from
(12) and (34) and τ = τ−1 since it’s the product of disjoint transpositions itself. (123)σ(123)−1 ∈
N since N is normal and thus σ−1(123)σ(123)−1 ∈ N since N is closed under inverses and
products. σ−1(123)σ(123)−1 = τ−1(34)(12)(123)(12)(34)τ(132) = (34)(12)(123)(12)(34)(132) =
(13)(24) ∈ N . So (135)(13)(24)(135)−1 ∈ N and also (13)(24)(135)(13)(24)(135)−1 ∈ N . But
(13)(24)(135)(13)(24)(135)−1 = (135). Thus N contains a 3-cycle so N = An [Note: We didn’t use
the fact that n ≥ 5 until the very end!] �

Corollary: Let n ≥ 5. The only normal subgroups of Sn are {(1)}, An, and Sn.

proof: First note that these are in fact normal subgroups of Sn since the trivial subgroup and
the whole group are always normal. An is the kernel of the sign homomorphism so it’s normal [or
we could use the fact that An is a subgroup of index 2 and index 2 subgroups are always normal].

Let N be a normal subgroup of Sn. Then N ∩ An is normal in An. Thus N ∩ An = An or
N ∩ An = {(1)}. If N ∩ An = An. Then either N = An or |N | > n!/2 so |N | = n! (there are no
divisors of ` between `/2 and `) so N = Sn.

Now let’s consider the case where N ∩ An = {(1)}. Thus N − {(1)} is a collection of odd
permutations. Let σ, τ ∈ N − {(1)}. Then στ ∈ N but στ is even since the product of two odd
permutations is an even permutation. Thus στ = (1). This applies to all non-identity elements of
N . So σσ = (1) if σ 6= (1) in N as well. Thus σσ = (1) = στ so σ = τ . Thus if N 6= {(1)}, then
N = {(1), τ} where τ 2 = (1). So τ is a product of disjoint transpositions (since its order is 2). Also,
τ must be odd so it’s the product of an odd number of disjoint transpositions.

Suppose τ is a single transposition. Without loss of generality assume τ = (12), then (13)(12)(13) =
(23) ∈ N since N is normal in Sn. But (12) 6= (13) so N has more than 2 elements (contradiction).

Finally consdier the case where τ is the product of more than a single transposition. Without
loss of generality assume two the disjoint transpositions are (12) and (34). So τ = (12)(34)σ
where σ is disjoint from (12) and (34), then (13)τ(13) = (13)(12)(34)σ(13) = (14)(23)σ ∈ N . But
τ = (12)(34)σ 6= (14)(23)σ so N has more than 2 elements (contradiction).

Therefore, N cannot contain a single odd permuation. Thus N = {(1)}. �
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