Homework #4

1. Suppose $a, b \in G$. We write $[a, b] = aba^{-1}b^{-1}$. This is called the *commutator* of a and b. Define:

$$G' = \langle [a, b] \mid a, b \in G \rangle = \langle aba^{-1}b^{-1} \mid a, b \in G \rangle$$

Due: Tue., Jan. 21st, 2014

So G' is the subgroup generated by the commutators. G' is called the *derived* or *commutator* subgroup of G.

- (a) Prove that $G' \triangleleft G$ (we already know it's a subgroup, so just show it's normal). What does $G' = \{1\}$ mean?
- (b) Let $N \triangleleft G$. Prove that $G \cap N$ is Abelian if and only if $G' \subset N$. [This means that G/G' is the largest Abelian quotient of G.]
- 2. Prove that S_4 does not have a subgroup isomorphic to Q (the group of Quaternions). [Hint: Remember that subgroups of S_4 are either all even or half even/half odd.]
- 3. Let $H \leq K \leq G$ (subgroups).
 - (a) Assume G is finite. Prove that [G:H] = [G:K][K:H].
 - (b) [Grad Problem] Do part (a) again. But now without assuming G is finite.
- 4. Suppose that $H, K \triangleleft G$ and that G = HK (which, since the subgroups are normal, implies that G = KH as well). Prove that G = KH as G = KH

¹One might ask, "Is $\{aba^{-1}b^{-1} \mid a,b \in G\}$ a subgroup?" In other words, can we avoid using "generated by" and just use the set of commutators? It turns out that the answer is "No." But the first example of a group whose commutators do not form a subgroup is a group of order 96.