Some Maple Commands for Doing Division with Remainder

[This goes with the Factorization Theory handout.]

```
> restart;
 with(GaussInt):
```

GIgcdex runs the Extended Euclidean Algorithm on Gaussian integers.

Here's our example from the handout:

```
> GIgcdex(-1+5*I,-3+I,'s','t');

's' = s;
't' = t;

s*(-1+5*I)+t*(-3+I);

1+I

s=1

t=-1+I

1+I

(1)
```

So for this example we get: s(-1+5i) + t(-3+i) = gcd = 1+i

Let's recompute using repeated division with remainder (we'll run the algorithm ourselves)...

Glquo is the Gaussian integer division with remainder command.

Our first remainder is 1+i (non-zero).

Our second remainder is 0, so the last non-zero remainder (i.e. 1+i) must be the GCD. Backtracking gives us the "extended" result...

>
$$r_1 = (-1+5*I)+(-q_1)*(-3+I);$$

 $1+I=1+I$ (4)

Now let's try the algorithm with regular polynomials. The "rem" command divides polynomials storing the quotient in a specified variable and spitting back the remainder.

 $x^3 - 2$ divided by $x^2 + 3x + 2$ is...

> rem(
$$x^3-2,x^2+3*x+2,x,'q'$$
);
 $7x+4$ (5)

x-3 (6)

We get that the quotient is x - 3 and the remainder is 7x + 4. Let's go again...

> rem($x^2+3*x+2,7*x+4,x,'q'$);

$$\frac{30}{49} \tag{7}$$

> q

$$\frac{1}{7}x + \frac{17}{49}$$
 (8)

This time the quotient is $\frac{1}{7}x + \frac{17}{49}$ and the remainder is $\frac{30}{49}$.

If we divide again, we'll get a remainder of 0 (since 30/49 is a unit). This means that the GCD of $x^3 - 2$ and $x^2 + 3x + 2$ is 30/49 (or normalizing, the GCD = 1).

Running the algorithm backwards yields...

> simplify((-x/7-17/49)*(x^3-2)+(x^2/7-4/49*x-2/49)*(x^2+3*x+2));
$$\frac{30}{49}$$
 (9)

So the desired s(x) and t(x) such that $s(x)(x^3-2)+t(x)(x^2+3x+2)=1$ are...

$$s(x) = 49/30*(-x/7-17/49);$$

$$s(x) = -\frac{7}{30} x - \frac{17}{30} \tag{10}$$

= >
$$t(x) = 49/30*(x^2/7-4/49*x-2/49);$$

$$t(x) = \frac{7}{30} x^2 - \frac{2}{15} x - \frac{1}{15}$$
 (11)

This means that $\frac{7}{30}x^2 - \frac{2}{15}x - \frac{1}{15}$ represents the inverse of $x^2 + 3x + 2$ in the quotient ring $\frac{\mathbb{Q}[x]}{(x^3 - 2)}$.

Let's check...

$$= rem((x^2+3*x+2)*(7/30*x^2-2/15*x-1/15),x^3-2,x,'q');$$
(12)

Notice that Maple can "rationalize" just as well as we can...

$$\frac{1}{2^{2/3} + 3 \, 2^{1/3} + 2} \tag{13}$$

= > rationalize(1/(2^(2/3)+3*2^(1/3)+2));

$$\frac{7}{30} 2^{2/3} - \frac{2}{15} 2^{1/3} - \frac{1}{15}$$
 (14)