Due: Fri., Jan. 22nd, **2016**

These problems are drawn from Rotman's "Galois Theory" (2nd edition).

Page 12 #5 Show that the intersection of any family of subrings is itself a subring.

Given S_{α} is a subring of a ring R for all $\alpha \in I$ (I is some index set). Show $\bigcap_{\alpha \in I} S_{\alpha}$ is a subring of R.

Page 12 #8 Let R be a (commutative) ring (with 1) and let $f(x) = r_0 + r_1 x + \cdots + r_n x^n \in R[x]$. We can define the formal derivative of f(x) as follows: $f'(x) = \frac{d}{dx} \left[f(x) \right] = r_1 + 2r_2 x + \cdots + nr_n x^{n-1}$.

Prove that the derivative is linear and obeys the product rule: [f(x) + g(x)]' = f'(x) + g'(x), [cf(x)]' = cf'(x), and [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x) for all $f(x), g(x) \in R[x]$ and $c \in R$.

Keep in mind that if $f(x) = \sum_{i=0}^n r_i x^i$ and $g(x) = \sum_{j=0}^m s_j x^j$, then $f(x)g(x) = \sum_{\ell=0}^{m+n} \left(\sum_{k=0}^\ell r_k s_{\ell-k}\right) x^\ell$.

- **Page 16 #13** Degrees of Difficulty $\partial(f(x)) = \deg(f(x)) = \deg(f(x))$
 - i. Let R be an integral domain, $f(x), g(x) \in R[x]$, and $f(x), g(x) \neq 0$. Briefly explain why the leading coefficient of f(x)g(x) is the product of the leading coefficients of f(x) and g(x). Then justify why $\partial(f(x)g(x)) = \partial(f(x)) + \partial(g(x))$.
 - ii. Prove that if R is an integral domain, then so is R[x].
 - iii. Consider $R = \mathbb{Z}_4[x]$. Show that $(2x+1)^2 = 1$. What does this say about the formula in part i and the result of part ii?
 - iv. Show that x can be factored: x = f(x)g(x) in $\mathbb{Z}_4[x]$ in such a way that neither f(x) nor g(x) is constant.

Page 16 #16 Field or not a field.

- i. Let \mathbb{F} be a field. Show that $(\mathbb{F}[x])^{\times} = \mathbb{F} \{0\}$ (i.e. the units of $\mathbb{F}[x]$ are exactly the non-zero constant polynomials).
- ii. Show that $\mathbb{Z}_2[x]$ is an infinite ring with exactly 1 unit.
- iii. Give an example of a non-constant polynomial in $\mathbb{Z}_4[x]$ that is a unit.
- Page 17 #19 Prove that the intersection of any family of subfields is itself a subfield. (Note that this intersection isn't the trivial ring since all of the subfields contain 1.)

Let \mathbb{E}_{α} be a subfield of a field \mathbb{F} for all $\alpha \in I$ (I is some index set). Show $\bigcap_{\alpha \in I} \mathbb{E}_{\alpha}$ is a subfield of \mathbb{F} .

¹This is a totally formal notion of derivative. There is no concept of "limit" in a general ring R. Also, keep in mind that $2r_2x$ is not 2 times r_2x but instead it is the 2nd additive power of r_2x . In other words, $2r_2x = r_2x + r_2x$. This may not show up in your proof, but it is something you should think about as you write up your solution.