
Math 4010/5530 Homework #3 Due: Wed., Feb. 17th, 2016

Euclidean Domain Let R be a Euclidean domain equipped with norm δ : R − {0} → Z≥0. Let M be the minimum value
taken on by the norm (i.e. M = min{δ(r) | r ∈ R− {0}}). Show that δ(1) = M . Then show that u ∈ R× (u is a unit)
iff δ(u) = M .

Hint: For the first part and half of the “iff”, the property δ(a) ≤ δ(ab) will give you what you need. For the other half
of the “iff” you’ll need to divide with remainder (hoping to get a remainder r = 0).

Gaussian Integers Recall that the Gaussian integers Z[i] = {a+ bi | a, b ∈ Z} are a Euclidean domain when equipped with
the norm:

N(a+ bi) = (a+ bi)(a+ bi) = (a+ bi)(a− bi) = a2 + b2

In every Euclidean domain we haveN(z) ≤ N(zw), but here we have something even stronger: the norm is multiplicative
(i.e. N(zw) = N(z)N(w)). Note also that for z = a+ bi ∈ Z[i], we have z̄ = z (i.e. a− bi = a+ bi) iff z is an integer
(i.e. z = a). Also, it may help to note that z divides w iff z̄ divides w̄ (since zk = w ⇐⇒ z̄k̄ = w̄).

Consider n ∈ Z. Notice that if n factors in Z, then n factors in Z[i]. However, the converse does not necessarily hold
(for example, 5 = (1+2i)(1−2i)). For clarity, in what follows, when we say prime integer or just prime we mean prime
in Z and when we say Gauss prime we mean prime in Z[i].

(a) Using the previous problem, identify Z[i]× (the units of the Gaussian integers).

(b) Show that π is a Gauss prime iff π̄ is a Gauss prime.

(c) Let p be a prime (integer). Show that either p is a Gauss prime or p = ππ̄ for some Gauss prime π.

Hint: If p = πτ , then N(π)N(τ) = N(p) = p2. So N(π) =? If N(z) is a prime integer, can z factor?

Lemma: If π is a Gauss prime, then N(π) = ππ̄ is either a prime integer or the square of a prime integer.

proof: Let π be a Gauss prime and suppose that π is not a prime integer (or an associate of a prime integer).
[Note: π isn’t a unit so N(π) > 1.] We already showed that π̄ is also a Gauss prime. Also, by considering the
units of Z[i], we can see that π and π̄ cannot be associates (if they were, they would necessarily be associates of
an integer).

Now consider the integer N(π). Suppose that N(π) = AB for some A,B ∈ Z≥0. Now π divides N(π) = ππ̄ = AB
so because π is prime it must either divide A or B. WLOG assume it divides A. Next, since π divides A, π̄ must
divide Ā = A as well (integers are self-conjugate). But π and π̄ are non-associate primes, thus relatively prime.
Hence their product AB = N(π) = ππ̄ must divide A. Therefore, B = 1. This means N(π) has no interesting
factorizations (it’s a prime integer).

Of course, if π is a Gauss prime which is an associate of a prime integer, then π = up for some unit u and prime
p. Then N(π) = N(u)N(p) = 1 · p2 = p2.

(d) Show if N(π) is a prime integer, then π must be a Gauss prime.

(e) Let p be a prime integer. Show that p = ππ̄ for some π ∈ Z[i] iff p = a2 + b2 for some a, b ∈ Z.

Lemma: Let p be an odd prime integer. Then p is a Gauss prime iff x2 + 1 is irreducible in Zp[x].

proof: Primes in PIDs generate maximal ideals. So p is a Gauss prime iff Z[i]/(p) is a field. Note that
Z[i]
��

(p)
∼=

Z[x]
��

(p, x2 + 1)
∼=

Zp[x]
��

(x2 + 1)
. So Z[i]/(p) is a field iff Z[x]/(x2 + 1) is a field. This is true iff (x2 + 1) is

maximal in Z2[x]. Thus iff x2 + 1 is irreducible in Zp[x].

(f) Let p be a prime integer. Show that p = ππ̄ from some π ∈ Z[i] iff x2 = −1 (mod p) has an integer solution.

Hint: If p = ππ̄, then p is not a Gauss prime. Apply the lemma. Also, you need to handle the case p = 2 separately
– the integer 2 isn’t odd!

Lemma: Let p be an odd prime (integer). Show that a ∈ Z is a solution of x2 = −1 (mod p) iff a is an element
of order 4 in U(p) = Z×

p (the group of units in Zp).
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proof: If a is a solution then a2 = −1 (mod p) so the order of a isn’t 1 or 2. But a4 = (−1)2 = 1 (mod p) so
the order of a is 4. Conversely, if a has order 4, then a4 = 1 (mod p). This means a is a root of the polynomial
x4− 1 = (x2− 1)(x2 + 1) in Zp[x]. But also, a has order 4 so a2 6= 1 (mod p). This means that a cannot be a root
of x2 − 1. Thus it is a root of x2 + 1 so that a2 + 1 = 0 (mod p) (i.e. a2 = −1 (mod p)).

Proposition: Let p be a prime integer. x2 = −1 (mod p) has an integer solution iff p 6= 3 (mod 4).

proof: First, any prime integer congruent to 0 or 2 (mod 4) must be even. The only such prime is p = 2. Notice
that 12 = 1 = −1 (mod 2). Thus we can turn our attention to odd primes. Assume p is odd.

Suppose that x2 = −1 (mod p) has an integer solution, say a. Then by the previous lemma |a| = 4 in the group
Z×
p . Notice that |Z×

p | = p − 1. So 4 divides p − 1. Therefore, p = 1 (mod 4). [Thus p 6= 3 (mod 4) for any such
prime.]

Conversely, if p 6= 3 (mod 4), then since p is odd we have that p = 1 (mod 4). Therefore, 4 divides p − 1. The
group Z×

p is cyclic (we will eventually prove that any finite subgroup of the group of units of a field is cyclic).
Therefore, this group must have an element of order 4, say a. Therefore, by the lemma above a is an integer
solution of x2 = −1 (mod p).

In summary, we’ve proven the following theorem. . .

Theorem: Let p be a prime integer. The following are equivalent:

• p = ππ̄ for some Gauss prime π.

• p = a2 + b2 for some a, b ∈ Z.

• x2 = −1 (mod p) has an integer solution.

• p 6= 3 (mod 4).

This theorem allows us to identify the primes in Z[i]. Factorizations can now be accomplished by focusing on
factoring (as an integer) the norm of an element and then seeing what that says about the element in Z[i].

Example: 6 + 2i = 2(3 + i). Notice that N(3 + i) = 32 + 12 = 10 so 3 + i isn’t a Gauss prime. 10 = 2 · 5.
2 = (1 + i)(1− i) and 5 = (1 + 2i)(1−2i). Thus (1 + i)(1− i)(1 + 2i)(1−2i) = 2 ·5 = 10 = (3 + i)(3− i) so because
Z[i] is a UFD, the prime factors of 3 + i must be found among 1± i and 1± 2i. Through trial and error we find
that 3 + i = (1− i)(1 + 2i). Thus 6 + 2i = 2(3 + i) = (1 + i)(1− i)(1− i)(1 + 2i) = (1 + i)(1− i)2(1 + 2i).

Example: 6 + 9i = 3(2 + 3i). Notice that 3 = 3 (mod 4) so 3 is not only a prime but also a Gauss prime.
Next, N(2 + 3i) = 22 + 32 = 13 (prime) so 2 + 3i is also a Gauss prime. Therefore, 6 + 9i = 3(2 + 3i) is a prime
factorization.

(g) Factor 700 in Z and then in Z[i].

(h) Factor 33 + 77i in Z[i].

Matching Problem In the following list of rings, each ring is isomorphic to exactly one other ring on the list. Pair them up!
Justify your pairings (find homorphisms and use the isomorphism theorem) and explain why non-paired rings aren’t
isomorphic.

• Q[x]
��

(x2)

• Q[x]
��

((x− 1)2)

• Q[x]
��

(x2 − 1)

• Q×Q
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Page 31 #45 A quotient of Q[x].

(a) Find the GCD of x3− 2x2 + 1 and x2−x− 3 in Q[x] and express it as a linear combination (i.e. run the Extended
Euclidean Algorithm).

(b) Let I = (x2− x− 3). Is x3− 2x2 + 1 + I zero, a zero divisor, or a unit in
Q[x]

��
I

? Prove your result (If zero, why?

If a zero divisor, what is a non-zero element that multiplied by gives zero? If a unit, what’s its inverse?).

(c) Let I = (x2 − x− 3). Is x+ I zero, a zero divisor, or a unit in
Q[x]

��
I

? Prove your result (If zero, why? If a zero

divisor, what is a non-zero element that multiplied by gives zero? If a unit, what’s its inverse?).

Prime, maximal, both, or neither? Identify the following ideals as prime, maximal, both, or neither.

(a) (x2 − 5) in Q[x]

(b) (x2 − 5) in R[x]

(c) (x2 + 1) in Q[x]

(d) (x2 + 1) in Z[x]

Finite Field Construct the finite field of order 9. Express F9 as a quotient of Z3[x]. You don’t have to write out full addition
and multiplication tables, but I do want you to compute the additive inverse, multiplication inverse, and order (in F×

9 )
of each (non-zero) element.

A Rational Problem As in the Factorization Handout, compute the inverse of x2 +x+ 2 + I in
Q[x]

��
I

where I = (x3−3).

Then use this result to rationalize the fraction
1

2 + 31/3 + 32/3
(i.e. write this fraction as a+ b · 31/3 + c · 32/3 for some

a, b, c ∈ Q).
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