Page 63 #79 Let \mathbb{F} be a field, $f(x) \in \mathbb{F}[x]$, and \mathbb{E} be a splitting field for f(x) over \mathbb{F} . In addition, let $G = \operatorname{Gal}(\mathbb{E}/\mathbb{F})$.

- (a) Suppose that f(x) is irreducible. Show that G acts **transitively** on the roots of f(x) in \mathbb{E} . This means that given any two roots $\alpha, \beta \in \mathbb{E}$ of f(x), there exists some $\sigma \in G$ such that $\sigma(\alpha) = \beta$. Hint: Consider the lemma and theorem on pages 55 & 56.
- (b) Suppose that f(x) has no repeated roots and that G acts transitively on the roots of f(x) in \mathbb{E} . Show that f(x) is irreducible. *Hint:* Suppose that f(x) factors. G must send roots of a factor to other roots of that factor. Transitivity of the action will force distinct factors to share a root (why?). This is a problem (why?).

This exercise then proves that for a separable polynomial f(x), G acts transitively on the roots of f(x) iff f(x) is irreducible.

Page 63 #80 Let $f(x) = x^4 - 10x^2 + 1 \in \mathbb{Q}[x]$. Find the Galois group of f(x) (over \mathbb{Q}). Note: The roots of f(x) are $\pm \sqrt{2} \pm \sqrt{3}$. Rotman suggests looking at Exercise 67 (page 43) and Example 20 (page 54). My suggestive calculation: $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$. $\sqrt{6}(\sqrt{2} + \sqrt{3}) = 3\sqrt{2} + 2\sqrt{3}$. $3(\sqrt{2} + \sqrt{3}) - (3\sqrt{2} + 2\sqrt{3}) = \sqrt{3}$.

Roots of Unity Just remember $\sqrt{1} = 1$.

- (a) Find a primitive n^{th} -root of unity when n=1,2,3,4,5, and 6. Your final formulas should not involve sines and cosines. For example: $e^{2\pi i/3} = \cos(2\pi/3) + i\sin(2\pi/3)$ is a primitive third root of unity, but an unacceptable (final) answer. You may find Wolfram Alpha helpful as you seek out what numbers like $\cos(2\pi/5)$ are (unless you have more special triangles memorized than I do).
- (b) Find the Galois groups of $x^n 1$ over \mathbb{Q} when n = 1, 2, 3, 4, 5, 6 and 7.