
#1 Basics Initial Calculations

- (a) Let z = 3 4i and w = -1 + 2i. Compute $z^2, \overline{z}, |z|, 1/z, wz, w + z, z/w$.
- (b) Solve $z^4 5z^2 + 6 = 0$.
- (c) Assume $z_1 = x_1 + y_1 i$ has positive real and imaginary parts and let $z_2 = \overline{z_1}$. What are $z_1 + z_2$ and $z_1 z_2$? Plot $z_1, z_2, z_1 + z_2, z_1 z_2$ together.
- (d) Plot the region $|z 2i| \le 2$.
- (e) Write i, $1 \sqrt{3}i$, and $\sqrt{3} + i$ in polar form, multiply them together (in polar), then convert back from polar to standard form.
- (f) Find the 3rd roots of unity (in polar and standard form). Then solve $z^3 = -1 + i$.

#2 Plotting Against You Let z = x + yi be as shown below:

- (a) Plot and label -z
- (b) Plot and label \bar{z}
- (c) Plot and label 1/z
- (d) Plot and label z^2
- #3 Transformers Go! In class, we showed that $w = (z (1+2i))e^{i\pi/4} + (1+2i)$ rotates the complex plane 45° about the point (1,2) = 1+2i. Also, $w = -\bar{z} + 2$ reflects the complex plane across the line Re(z) = 1. Give similar formulas for the following transformations:
 - (a) Rotate the plane 30° about the point -1 + i.
 - (b) [Grad. Problem] Reflect across the line through $1 + \sqrt{3}i$ and $3 \sqrt{3}i$.