Math 4010-101

Homework #3

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1. Coordinated Practice! Let $P_2 = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$ be the subspace of $\mathbb{R}[x]$ consisting of quadratic and lower degree polynomials. Here we let $\alpha = \{1, x, x^2\}$ be our standard basis (note our intended order). Let $\mathbb{R}^{2\times 2}$ be the space of 2×2 real matrices. Let $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ be our standard basis (note the ordering here – go successively across each row).

Let
$$T: P_2 \to \mathbb{R}^{2 \times 2}$$
 be defined by $T(ax^2 + bx + c) = \begin{bmatrix} a+c & a+b+2c \\ 2b+2c & b+c \end{bmatrix}$.

- (a) Prove T is a linear transformation.
- (b) Compute the standard matrix of T (i.e., $[T]^{\beta}_{\alpha}$).
- (c) Find a basis for both ker(T) and $T(P_2)$ don't forget to translate back out of coordinates! What is the rank and nullity of T? Is T one-to-one? Is it onto? Is it invertible?
- (d) Let $\gamma = \{x+1, x^2+x, x^2+1\}$ and $\delta = \left\{ \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} \right\}$. Justify why these are bases of P_2 and $\mathbb{R}^{2\times 2}$ respectively.
- (e) Calculate the change of basis matrices $[I]^{\gamma}_{\alpha}$ and $[I]^{\delta}_{\beta}$.
- (f) Calculate the standard coordinates of $f(x) = x^2 + 2x + 3$ and then the γ -coordinates of f(x). Also, compute the standard and δ -coordinates of T(f(x)).
- (g) Find $[T]^{\delta}_{\gamma}$. Then verify that $[T(f(x))]_{\delta} = [T]^{\delta}_{\gamma} \cdot [f(x)]_{\gamma}$.
- #2. Composing Coordinates. Recall the definitions of P_2 , $\mathbb{R}^{2\times 2}$, α , and β from Problem #1 above.

Let $T = \frac{d}{dx}$: $P_2 \to P_2$ be the derivative operator on P_2 (i.e., $T(ax^2 + bx + c) = 2ax + b$) and let $S : \mathbb{R}^{2 \times 2} \to P_2$ be defined by

$$S\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = (a+b)x^2 + (a+d)x - c$$

Find $[T]^{\alpha}_{\alpha}, [S]^{\alpha}_{\beta}$. Then compute $[T \circ S]^{\alpha}_{\beta}$ using the previous two matrices. Verify this formula by giving a general formula for the linear transformation $T \circ S : \mathbb{R}^{2 \times 2} \to P_2$ and the computing $[T \circ S]^{\alpha}_{\beta}$ directly.

- #3. The trace map merely sums the diagonal entries of a matrix. In particular, $\text{tr} : \mathbb{F}^{n \times n} \to \mathbb{F}$ is defined by $\text{tr}(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}$ if the (i, j)-entry of A is denoted a_{ij} .
 - (a) Prove that the trace map is linear (for general n).
 - (b) Consider the trace map on 3×3 matrices. Find its standard matrix (use a basis α of E_{ij} 's for $\mathbb{F}^{3\times 3}$ and $\beta = \{1\}$ for \mathbb{F}).
 - (c) Continuing part (b), find a basis for its kernel and range. What is its nullity and rank? Is it one-to-one, onto, and/or invertible?
- #4. Standard Stuff. Let $T: V \to W$ be a linear transformation.
 - (a) Prove $\ker(T) = {\mathbf{v} \in V | T(\mathbf{v}) = \mathbf{0}} = T^{-1}({\mathbf{0}})$ is a subspace of V (using the subspace test no cheating here). Then show that T is one-to-one if and only if $\ker(T) = {\mathbf{0}}$.
 - (b) Suppose V and W are finite dimensional (e.g., $\dim(V) = n$ and $\dim(W) = m$) with bases α and β respectively. Given $A = [T]^{\beta}_{\alpha}$, what about A tells us whether T is one-to-one or not? What would tell us whether T is onto or not?
 - (c) Continuing part (b), explain why in the case that $\dim(V) = \dim(W)$ (for example, in the case of a linear operator) we have that T is one-to-one if and only if T is onto.