Math 4010-101

Homework #4

Please remember when submitting any work via email or in person to...

PUT YOUR NAME ON YOUR WORK!

#1. A Based Problem Let std = $\{f_1, f_2, f_3\} = \{1, x, x^2\}$ be the standard basis for $P_2 = \{ax^2 + bx + c \mid a, b, c \in \mathbb{R}\}$. Also, let $\alpha = \{g_1, g_2, g_3\} = \{1 + x^2, 1 + 2x + x^2, 2 + x\}$.

- (a) Explain why α is a basis for P_2 . Then find $[I]_{\text{std}}^{\alpha}$.
- (b) Give explicit formulas for $f_1^*, f_2^*, f_3^*, g_1^*, g_2^*$, and g_3^* . For example, $f_3^*(ax^2 + bx + c) = a$.
- (c) Compute $[3x^2 + 2x + 1]_{\alpha}$ using your change of basis matrix found in (a) and then using your formulas for $\alpha^* = \{g_1^*, g_2^*, g_3^*\}$ found in part (b).
- (d) Let $m(ax^2 + bx + c) = -4a + 3c$. Find $[m]_{std^*}$ and $[m]_{\alpha^*}$.
- #2. Completely Annihilated by Math Let V be a vector space over \mathbb{F} and let W be a subspace of V. We define $A(W) = \{f \in V^* \mid f(w) = 0 \text{ for all } w \in W\}$. In other words, $f \in A(W)$ if $f(W) = \{0\}$ (i.e., f annihilates all of our subspace W).
 - (a) Show that A(W) is a subspace of V*.[I'll do this one for you.]

First, the zero functional sends all vectors to zero (the scalar). Thus $0 \in A(W)$ (i.e., the annihilator of W is a non-empty subset of V^*). Let $f, g \in A(W)$ and $s \in \mathbb{F}$. Notice that for all $\mathbf{w} \in W$, we have $(f+g)(\mathbf{w}) = f(\mathbf{w}) + g(\mathbf{w}) = 0 + 0 = 0$ and $(sf)(\mathbf{w}) = sf(\mathbf{w}) = s0 = 0$. Thus $f + g, sf \in A(W)$. Therefore, A(W) is a subspace.

(b) Suppose U is a subspace of W. Explain why $A(W) \subseteq A(U)$. [And this one too.]

Let $f \in A(W)$. This means that $f(\mathbf{w}) = 0$ for all $\mathbf{w} \in W$. Suppose $\mathbf{u} \in U$. Then because $U \subseteq W$ we have $\mathbf{u} \in W$ and so $f(\mathbf{u}) = 0$. Therefore, f annihilates all of U and thus $f \in A(U)$. Thus $A(W) \subseteq A(U)$. Briefly, if we annihilate all of W, then since U is contained in W, we certainly annihilate all of U.

(c) Suppose $V = U \oplus W$. Show that $V^* = A(W) \oplus A(U)$.

Note: You need to show that every dual vector is a sum of a dual vector annihilating W and one annihilating U. Also, you need to show that if $f \in A(W) \cap A(U)$ then f = 0.

Big hint: Consider $\pi_U : V \to V$ defined by $\pi(\mathbf{u} + \mathbf{w}) = \mathbf{u}$ where $\mathbf{u} \in U$ and $\mathbf{w} \in W$ (this is well defined since every vector in V is a *unique* sum of a vector in U and a vector W – because V is a *direct* sum of those spaces). This π_U is called a projection onto U. It is linear. Likewise, define π_W . Consider composing $f \in V^*$ with these maps.

(d) Let $T: V \to V$ be a linear operator and suppose that $T(W) \subseteq W$ (i.e., W is T-invariant). Show that $T^*(A(W)) \subseteq A(W)$ (i.e., A(W) is T^* -invariant).

Recall: $T^*: V^* \to V^*$ is the transpose of T defined by $T^*(f) = f \circ T$.

#3. Mapping Stuff Let $T: V \to W$ be a linear transformation.

- (a) Let U be a subspace of V. Show that T(U) = {T(u) | u ∈ U} is a subspace W. Note: As a consequence, T(V) (i.e., the range of T) is a subspace of W.
 [I'll do this one for you.] Notice that 0 ∈ U (since U is a subspace) and thus 0 = T(0) ∈ T(U). Therefore, T(U) is a non-empty subset of W. Next, let x, y ∈ T(U) and s ∈ F. This implies that there exists some a, b ∈ U such that T(a) = x and T(b) = y. Therefore, x + y = T(a) + T(b) = T(a + b) ∈ T(U) since a + b ∈ U. Likewise, s x = sT(a) = T(s a) ∈ T(U) since s a ∈ U. Thus T(U) is a subspace.
- (b) Let U be a subspace of W. Show that $T^{-1}(U) = \{ \mathbf{v} \in V \mid T(\mathbf{v}) \in U \}$ is a subspace of V. *Note:* As a consequence, $T^{-1}(\{\mathbf{0}\}) = \ker(T)$ is a subspace of V. *Hint:* $\mathbf{v} \in T^{-1}(U)$ if and only if $T(\mathbf{v}) \in U$. This proof *should* be easier than the one in part (a).
- (c) [The Second Isomorphism Theorem] Let U_1 and U_2 be subspaces of V.

Show that $(U_1 + U_2)/U_2 \cong U_1/(U_1 \cap U_2)$. Hint: Consider the map $\mathbf{v} \mapsto \mathbf{v} + U_2$ from U_1 to $(U_1 + U_2)/U_2$. Apply the First Isomorphism Theorem.